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The Strong Controllability Problem SMT-based encodings Experimental Evaluation Conclusion

Scheduling for planning applications

The motivating problem
Planning subject to temporal constraints, when the agent cannot
control on the actual duration of all the activities.

Uncertainty Type
No Uncertainty Uncertainty

Activities

t

0 7

As

8

Ae

11 16

Bs

19

Be

20

t

0 7

As

8

Ae

11 16

Bs

19

Be

20

TimePoints

As Ae
[7, 11]

Bs

[0,∞)

Be
[8, 11]

[0, 20]

As Ae
[7, 11]

Bs

[0,∞)

Be
[8, 11]

[0, 20]
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Temporal Problems with Uncertainty

Example

As Ae
[7, 11]

Bs

[0,∞)

Be
[8, 11]

[0, 20]

As , Ae , Bs are Controllable Time Points (Xc)
Be is an Uncontrollable Time Point (Xu)

represents Free Constraints (Cf )
represents Contingent Constraints (Cc)

Taxonomy
Let {x1, ..., xk} =̇ Xc ∪ Xu.

STPU TCSPU DTPU
No disjunctions Interval disjunctions Arbitrary disjunctions
(xi − xj) ∈ [l , u] (xi − xj) ∈

⋃
w [lw , uw ]

∨
w ((xiw − xjw ) ∈ [lw , uw ])

2/16
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Strong Controllability

Intuition
Search for a Fixed Schedule
that fulfills all free the
constraints in every situation.

Example

As Ae
[7, 11]

Bs

[0,∞)

Be
[8, 11]

[0, 20]

Var Time
As 0
Ae 8
Bs 9

Definition
A temporal problem with uncertainty is Strongly Controllable if

∃~Xc .∀~Xu.(Cc(~Xc , ~Xu)→ Cf (~Xc , ~Xu))

where ~Xc and ~Xu are the vectors of controllable and uncontrollable
time points respectively, Cc(~Xc , ~Xu) are the contingent constraints
and Cf (~Xc , ~Xu) are the free constraints.

3/16



The Strong Controllability Problem SMT-based encodings Experimental Evaluation Conclusion

Strong Controllability

Intuition
Search for a Fixed Schedule
that fulfills all free the
constraints in every situation.

Example

As Ae
[7, 11]

Bs

[0,∞)

Be
[8, 11]

[0, 20]

Var Time
As 0
Ae 8
Bs 9

Definition
A temporal problem with uncertainty is Strongly Controllable if

∃~Xc .∀~Xu.(Cc(~Xc , ~Xu)→ Cf (~Xc , ~Xu))

where ~Xc and ~Xu are the vectors of controllable and uncontrollable
time points respectively, Cc(~Xc , ~Xu) are the contingent constraints
and Cf (~Xc , ~Xu) are the free constraints.

3/16



The Strong Controllability Problem SMT-based encodings Experimental Evaluation Conclusion

Strong Controllability

Intuition
Search for a Fixed Schedule
that fulfills all free the
constraints in every situation.

Example

As Ae
[7, 11]

Bs

[0,∞)

Be
[8, 11]

[0, 20]

Var Time
As 0
Ae 8
Bs 9

Definition
A temporal problem with uncertainty is Strongly Controllable if

∃~Xc .∀~Xu.(Cc(~Xc , ~Xu)→ Cf (~Xc , ~Xu))

where ~Xc and ~Xu are the vectors of controllable and uncontrollable
time points respectively, Cc(~Xc , ~Xu) are the contingent constraints
and Cf (~Xc , ~Xu) are the free constraints.

3/16



The Strong Controllability Problem SMT-based encodings Experimental Evaluation Conclusion

Contributions

First comprehensive implemented solver for Strong
Controllability

Logic-based framework for Temporal Problems with
Uncertainty
Efficient encodings of Strong Controllability problems in SMT
Extensive experimental evaluation of the approach

4/16
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Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order
Boolean combination of theory atoms in a given theory T .

Given a formula φ, φ is satisfiable if there exists a model µ such
that µ |= φ.

Example
φ=̇(∀x .(x > 0)∨(y ≥ x))∧(z ≥ y)
is satisfiable in the theory of real
arithmetic because

µ = {(y , 6), (z , 8)}

is a model that satisfies φ.

Theories
Various theories can be used.

In this work:

LRA (Linear Real Arithmetic)

QF LRA (Quantifier-Free
Linear Real Arithmetic)

5/16
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Quantifier Elimination in LRA

Quantifier Elimination Definition
A theory T has quantifier elimination if for every formula Φ , there
exists another formula ΦQF without quantifiers which is equivalent
to it (modulo the theory T )

LRA theory admits quantifier elimination, but elimination
algorithms are very costly (doubly exponential in the size of the
original formula).

Example
(∃x .(x ≥ 2y + z) ∧ (x ≤ 3z + 5))↔ (2y − 2z − 5 ≤ 0)

6/16
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First step: Uncontrollability Isolation
Let e ∈ Xu and b ∈ Xc .
For every contingent constraint (e − b) ∈ [l , u], we introduce an
offset y =̇ b + u − e.

Timeb b + l b + ue

y

Definition

Let ~Yu be the offsets for a given Temporal Problem with Uncertainty

Let Γ(~Yu) be the rewritten Contingent Constraints

Let Ψ(~Xc , ~Yu) the rewritten Free Constraints.
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Uncontrollability Isolation: example

As Ae
[7, 11]

Bs

[0,∞)

Be
[8, 11]

[0, 20]

Original formulation
∃As , Ae , Bs . ∀Be .

((Be − Bs ) ∈ [8, 11])→ (((Ae − As ) ∈ [7, 11])

∧ ((Be − As ) ∈ [0, 20])

∧ ((Bs − Ae) ∈ [0,∞)))

Rewritten formulation with YBe offset
∃As , Ae , Bs . ∀YBe .

(YBe ∈ [0, 3])→(((Ae − As ) ∈ [7, 11])

∧ (((Bs + 11− YBe )− As ) ∈ [0, 20])

∧ ((Bs − Ae) ∈ [0,∞)))

~Yu = [YBe ]

Γ(~Yu) = (YBe ∈ [0, 3])

Ψ(~Xc , ~Yu) = (((Ae −As ) ∈ [7, 11])∧ ... ∈ [0,∞)))

8/16
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DTPU encodings

Direct and Näıve encodings

Direct Encoding
Strong Controllability definition is by itself an encoding in
SMT(LRA)

∃~Xc .∀~Xu.(Cc(~Xc , ~Xu)→ Cf (~Xc , ~Xu))

Näıve Encoding
Thanks to uncontrollability isolation, Strong Controllability can be
rewritten as follows.

∃~Xc .∀~Yu.(Γ(~Yu)→ Ψ(~Xc , ~Yu))

9/16
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DTPU encodings

Distributed Encoding
Idea: because of the cost of quantifier elimination, many small
quantifications can be solved more efficiently than a big single one.

Starting Point

We assume Ψ(~Xc , ~Yu)

Ψ(~Xc , ~Yu) =̇
∧
h
ψh(~Xch ,

~Yuh )

Distributed Encoding
From the Näıve Encoding we can derive a Distributed Encoding, by
pushing the quantifications:

∃~Xc .
∧
h
∀~Yuh .(¬Γ(~Yu)|Yuh

∨ ψh(~Xch ,
~Yuh ))
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DTPU encodings

Eager ∀ Elimination Encoding

Idea: Starting from Distributed Encoding, we can eliminate
quantifiers during the encoding, producing a QF LRA formula.

Encoding
Let

ψΓ
h(~Xch ) =̇ ¬∃~Yuh .(Γ(~Yuh )|Yuh

∧ ¬ψh(~Xch ,
~Yuh ))

1 Resolve ψΓ
h(~Xch ) for every clause independently using a

quantifier elimination procedure
2 Solve the QF LRA encoding:

∃~Xc .
∧
h
ψΓ

h(~Xch )

11/16
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TCSPU specific encodings

Exploit TCSPU structure

Consider a single TCSPU constraint:

B − A ∈ [0, 20] [25, 50] [60, 75]

time0

Encoding TCSPU constraints in 2-CNF (Hole Encoding)

((B − A) > 0)

∧ ((B − A) < 20) ∨ ((B − A) > 25)

∧ ((B − A) < 50) ∨ ((B − A) > 60)

∧ ((B − A) < 75)

12/16
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TCSPU specific encodings

Static quantification TCSPU
Idea: Exploit Hole Encoding for TCSPU to statically resolve
quantifiers in the Eager ∀ elimination encoding.

Approach
Hole Encoding gives us a 2-CNF formula. We can enumerate all
the possible (8) cases and statically resolve the quantification.

Cases
Let bi , bj ∈ Xc , ei , ej ∈ Xu.
The only possible clauses in the Hole Encoding are in the form:

(bi − bj) ≤ k
(ei − bj) ≤ k
(bi − ej) ≤ k
(ei − ej) ≤ k

(bi−bj) ≤ k1∨(bi−bj) ≥ k2

(ei−bj) ≤ k1∨(ei−bj) ≥ k2

(bi−ej) ≤ k1∨(bi−ej) ≥ k2

(ei −ej) ≤ k1∨ (ei −ej) ≥ k2

13/16
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TCSPU specific encodings

Static quantification TCSPU (Example)
Let b ∈ Xc , e ∈ Xu and let ye be the offset for e.
Let C be a hole-encoded clause of the TCSPU problem.

C =̇ (b − e) ≤ u ∨ (b − e) ≥ l

In the eager ∀ elimination encoding we have

¬∃ye .((y ≥ 0) ∧ (y ≤ ue − le)∧
¬(((b − (be + u − ye)) ≤ u) ∨ ((b − (be + u − ye)) ≥ l)).

The formula can be statically simplified

R =̇ ((l − b + be + ue ≤ 0) ∨ (l − b + be + le > 0))∧
((l − b + be + le < 0) ∨ (b − be − u − le ≤ 0))

Whenever a clause matches the structure of C we can derive ψΓ
h(~Xch ) by

substituting appropriate values for l , u, be , le and ue in R.

14/16
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Strong Controllability Results

Random instance
generator
SMT solvers:

Z3 (QF LRA, LRA)
MathSAT5 (QF LRA)

Quantification
techniques:

Z3 simplifier
Fourier-Motzkin
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Thanks

Thanks for your attention!
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Temporal Problems with Uncertainty

Definition
A Temporal Problem with Uncertainty is a tuple (Xc ,Xu,Cc ,Cf ).

Xc=̇{b1, ..., bn} is the set of controllable time points
Xu=̇{e1, ..., em} is the set of uncontrollable time points
Cc=̇{cc1, ..., ccm} is the set of contingent constraints
Cf =̇{cf1, ..., cfh} is the set of free constraints

cci =̇(ei − bji ) ∈ [li , ui ] cfi =̇
∨Di

j=1(xi ,j − yi ,j) ∈ [li ,j , ui ,j ]

ji ∈ [1 . . . n]

li , ui ∈ R
li ≤ ui

li ,j , ui ,j ∈ R∪{+∞,−∞}

li ,j ≤ ui ,j

Di is the number of disjuncts for
the i-th constraint
xi ,j , yi ,j ∈ Xc ∪ Xu
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Temporal Uncertainty Formalization

Uncertainty can be seen as a game between an Agent and the
adversarial Nature.

Rules
The Agent schedules a set of Controllable Time Points (Xc)

The Agent must fulfill a set of temporal constraints called
Free Constraints (Cf )

The Nature tries to prevent the success of the agent
scheduling a set of Uncontrollable Time Points (Xu)
The Nature must fulfill a set of temporal constraints called
Contingent Constraints (Cc)
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Extended Temporal Problem Taxonomy

Let {x1, ..., xk} be the set of all time points of the temporal
problem (with uncertainty).

Uncertainty Type
No Uncertainty Uncertainty

Co
ns

tr
ai

nt
Ty

pe No disjunctions STP STPU
(xi − xj) ∈ [l , u]

Interval disjunctions TCSP TCSPU
(xi − xj) ∈

⋃
w [lw , uw ]

Arbitrary disjunctions DTP DTPU∨
w ((xiw − xjw ) ∈ [lw , uw ])
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Consistency of STP
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Consistency of TCSP
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Consistency of DTP

0 500 1000 1500 2000

1
10

0
10

00
0

# of instances

C
um

ul
at

iv
e 

tim
e 

(s
ec

)

TSAT++ switch
Z3 naive
Z3 switch
MathSAT4 naive
MathSAT4 switch
MathSAT5 naive
MathSAT5 switch

26/16


	The Strong Controllability Problem
	SMT-based encodings
	DTPU encodings
	TCSPU specific encodings

	Experimental Evaluation
	Conclusion
	Appendix

