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Abstract

The framework of temporal problems with uncertainty (TPU) is useful to express tem-
poral constraints over a set of activities subject to uncertain (and uncontrollable) du-
ration. In this work, we focus on the most general class of TPU, namely disjunctive
TPU (DTPU), and consider the case of weak controllability, that allows one to model
problems arising in practical scenarios (e.g. on-line scheduling).

We first tackle the decision problem, i.e. whether there exists a schedule of the
activities that, depending on the uncertainty, satisfies all the constraints. We propose a
logical approach, based on the reduction to a problem of Satisfiability Modulo Theories
(SMT), in the theory of Linear Real Arithmetic with Quantifiers. This results in the first
implemented solver for weak controllability of DTPUs.

Then, we tackle the problem of synthesizing control strategies for scheduling the
activities. We focus on strategies that are amenable for efficient execution. We prove
that linear strategies are not always sufficient, even in the sub-case of simple TPU
(STPU), while piecewise-linear strategies, that are multiple conditionally-applied lin-
ear strategies, are always sufficient. We present several algorithms for the synthesis of
linear and piecewise-linear strategies, in case of STPU and of DTPU.

All the algorithms are implemented on top of SMT solvers. We provide experimen-
tal evidence of the scalability of the proposed techniques, with dramatic speed-ups in
strategy execution compared to on-line reasoning.

Keywords: Weak Controllability, Temporal Problems, Satisfiability Modulo Theory,
Strategy Synthesis

1. Introduction

Many practical settings, such as planning and scheduling, require the solution of
sets of constraints over time points, that typically represent the time at which activities
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begin and end. For example, constraints may represent a bound on the overall time
span, or lower/upper bounds on the distance between two activities.

The Temporal Problem (TP) [18, 36] is a well studied formalism to model such
temporal constraints. In the basic form of TP, also referred to as TP without uncer-
tainty, the durations of activities are assumed to be controllable by the executor. This
means that the executor assumes to have the possibility of choosing any duration that
it may want. A solution is an assignment to all the time points (i.e., the beginning
time and the end time of the activities), that satisfies the constraints. Depending on the
structure of the constraints, TPs range from simple temporal problems (STP) [18], to
temporal constraint satisfaction problems (TCSP) [18], to disjunctive temporal prob-
lems (DTP) [36].

In practice, activities may also have uncertain (and uncontrollable) durations. For
example, it may be impossible to know precisely the time taken by a drilling or lo-
comotion procedure; yet, the production of an overall schedule must be able to take
this uncertainty into account. The formal framework of TPs has been extended with
uncertainty (TPU), thus obtaining STPU, TCSPU, and DTPU [38, 32, 37]. Because of
uncertainty, TPUs are much more complicated than TPs without uncertainty. In fact,
they can be thought in terms of games, where the scheduler/executor must play against
an “adversarial” environment. Intuitively, the variables representing the time points are
separated into controllable ones (that are existentially quantified), and uncontrollable
ones (universally quantified).

Within this setting, several degrees of solution have been identified for TPUs [38].
In strong controllability, a solution is a fixed, unconditioned assignment to each con-
trollable time point, that will satisfy the constraints regardless of the uncontrollable du-
ration of the activities. This corresponds to devising a time-triggered program, where
activities are started at fixed times.

In dynamic controllability, a solution is a strategy where the values of controllable
variables may depend on the values of the uncontrollable ones, as long as they can
be observed, i.e. they occur in the past. The corresponding execution must deal with
branching, and may interleave the start of activities with the observation of the uncon-
trollable (but observable) “end of activity” events.

In this paper we focus on weak controllability, that is concerned with the existence
of a strategy that associates values to the controllable starting points of each activity, as
a function of the uncontrollable durations. The values for the uncontrollable durations
are not known at the moment of solving the problem; however, the executor is given
the actual value of such durations just before the execution starts.

There are several reasons for studying weak controllability. From the temporal
problems perspective, weak controllability is a conceptually interesting dual of the
strong controllability problem. In addition, deciding whether a given TPU is weakly
controllable may serve as a pre-check for more complex problems such as dynamic
controllability. In fact, weak controllability is a necessary condition for dynamic con-
trollability [38].

From the practical standpoint, weak controllability allows for the modeling of a
setting where a number of tasks is to be repeatedly executed, but with modalities that
depend on some environmental parameters that become available just prior to execu-
tion. For example, an automated production line may be required to perform a set of
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activities, whose duration functionally depends on the measured size of the objects to
be manipulated. The duration of the activities is unknown a priori, except for an upper
and lower bound, but it becomes precise once the actual objects materialize. Similarly,
in a multi-core processor, the power management may dynamically control the actual
clock speeds, thus affecting the duration of jobs. An on-line scheduler may be required
to decide the appropriate allocation based on information that may be made available
by the power management unit. Another example of application is given in the setting
of remote systems (such as space exploration rovers or satellites), where the degrada-
tion due to use causes many activities to change duration over time. For example, the
movement speed of many components may decrease with the age of the system. These
domains share the fact that the tasks may be repeated multiple times, on platforms of
limited capacity, and in conditions that can be estimated prior to execution. As such,
they can be encoded as weak controllability problems.

In this paper, we tackle weak controllability for DTPUs (i.e. in its most general
form), making the following contributions. First, we propose a general decision pro-
cedure for the problem of weak controllability for DTPUs. Our approach makes use
of the framework of Satisfiability Modulo Theory (SMT) [4], a formal framework that
allows for the analysis of problems in decidable fragments of First Order Logic. The
decision procedure is based on a reduction to an SMT problem for the theory of Quan-
tified Linear Real Arithmetic (LRA). The encoding can be thought as working by
refutation: we state the existence of an assignment to uncontrollable time points that
cannot be countered by any controllable assignment. This means that the SMT prob-
lem is satisfiable if and only if the TPU is not weakly controllable. The problem can
thus be directly provided to an efficient SMT solver. This approach accounts for the
first implemented decision procedure for weak controllability of DTPUs.

Then, we investigate the problem of on-line strategy execution, i.e. given a weakly
controllable DTPU, how to repeatedly produce a suitable schedule for the controllable
time points as a function of a valuation to the uncontrollable ones. We propose an ap-
proach, referred to as implicit strategy execution, based on the run-time execution of
a solver for TP without uncertainty: any valuation to the uncontrollable durations re-
moves the uncertainty from the problem, and thus transforms the TPU at hand into a TP.
The solver is then invoked to solve the consistency problem yielding an assignment to
the controllable time points. Unfortunately, this solution imposes strong requirements
on the run-time: most notably, the control platform must support the execution of a
solver; in addition, at each iteration it is required to solve an NP-hard problem, i.e. a
DTP (without uncertainty).

This motivates the investigation of efficient run-time execution for weakly con-
trollable TPUs. We analyze the spectrum of explicit strategies, expressed in a form
that does not require reasoning, and can thus be directly evaluated. We consider lin-
ear strategies, that are strategies in which the values for the controllable time points
are a linear function of the uncontrollable ones; and piecewise-linear strategies, that
are combinations of different linear strategies, each associated with an activation con-
dition defined over the uncontrollable time points. Linear strategies turn out not to
be expressive enough in general: we prove that even for the STPU problem class, a
weakly controllable instance is not guaranteed to have a linear strategy. We also prove
that piecewise-linear strategies are sufficiently expressive: a piecewise-linear strategy
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is guaranteed to exist for every weakly controllable DTPU.
Finally, we address the synthesis problem: given a weakly controllable temporal

problem, we algorithmically synthesize a function from an assignment to uncontrol-
lable time points to an assignment to the controllable ones. We propose a number of
algorithms for the synthesis of a strategy. We start by considering linear strategies,
developing two algorithms to produce linear strategies for the STPU and DTPU cases.
Then, we generalize to the case of piecewise-linear strategies, and we propose several
algorithms for the STPU and DTPU cases.

All the proposed algorithms have been implemented in a tool for solving tempo-
ral problems under uncertainty. The tool is developed on top of, and fully leverages,
state-of-the-art SMT solvers [17, 7]. To the best of our knowledge, this is the first
implementation for weak controllability and strategy extraction. We carried out an
extensive experimental evaluation on a comprehensive set of benchmarks. Our imple-
mentation, available on-line, demonstrates high scalability, and is able to automatically
extract strategies of significant size. The experimental evaluation highlights a dramatic
speed-up in the execution of the synthesized explicit strategies.

Structure of the paper. In Section 2, we provide some background and we define the
addressed problem. In Section 3 we formally introduce TPUs and weak controllability.
In Section 4 we describe our SMT-based decision procedure. In Section 5 we formalize
the concept of weak strategy and we prove that linear strategies are not always present
for a weakly controllable problem, but piecewise-linear strategies are. In Section 6
we analyze the problem of strategy synthesis for all the different problem classes and
strategy types. In Section 7 we present an experimental evaluation of the approach. In
Section 8 we summarize the most relevant work. Finally, in Section 9 we draw some
conclusions and discuss future work.

2. Background

2.1. Technical Preliminaries

Our setting is standard First Order Logic [24]. The first-order signature is com-
posed of constants, variables, function symbols, Boolean variables, and predicate sym-
bols. A term is either a constant, a variable, or the application of a function symbol
of arity n to n terms. A theory constraint (also called a theory atom) is the applica-
tion of a predicate symbol of arity n to n terms. An atom is either a theory constraint
or a Boolean variable. A literal is either an atom or its negation. A clause is a finite
disjunction of literals. A formula is either true (>), false (⊥), a Boolean variable, a
theory constraint, the application of a propositional connective (¬, ∧, ∨, →, ↔) of
arity n to n formulae, or the application of a quantifier (∀, ∃) to an individual vari-
able and a formula. If t1 and t2 are terms, and φ is a formula, an if-then-else (ITE)
term is ite(φ, t1, t2). The semantics of an ITE term is the usual if-then-else semantics
from programming languages. For example, the term ite(x > y, x, y) where x and y
are numeric variables, corresponds to the maximum between x and y. An ITE term
ite(φ, t1, t2) occurring in a formula ψ can be rewritten by substituting each occurrence
with a fresh variable v and by conjoining (¬φ ∨ (v = t1)) ∧ (φ ∨ (v = t2)). See [23]
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for a thorough discussion. We use x, y, v, . . . for variables, and ~x, ~y,~v, . . . for vectors
of individual or Boolean variables. Terms and formulae are referred to as expressions.
Formulae are denoted with φ, ψ, . . .. Let ~x be a vector of variables, we indicate the i-th
variable in the vector with xi. We write φ(x) to highlight the fact that x is free in φ,
and φ(~x) to highlight the fact that the free variables of φ are variables in ~x. We indicate
with Q~x.φ(~x) the formula Qx1.Qx2. . . . Qxn.φ(x1, . . . , xn), where Q ∈ {∀,∃}.

Substitution is defined in the standard way. We write φ[s/v] for the substitution of
every occurrence of the variable v in φ with the term s. Let ~v be a vector of variables
and ~s be a vector of terms, we write φ[~s/~v] for the parallel substitution of every occur-
rence of vi in φ with si. With a slight abuse of notation, if φ(~x, ~y) is a formula, we
write φ(ψ(~t ), ~y) as a shorthand for φ[ψ(~t )/~x].

We use the standard semantic notion of interpretation and satisfiability [24]. We call
model µ of a formula φ(~x) a pair composed of an assignment that maps each variable
xi into an element of its domain and an interpretation for the non-logical symbols that
satisfies the formula. A formula φ(~x) is satisfiable if and only if it has a model. Thus,
the problem of checking the satisfiability of a formula consists in determining whether
there exists a model for that formula.

2.2. Satisfiability Modulo Theory

In propositional logic, the satisfiability problem is approached with enhancements
of the DPLL algorithm [15]: the formula is converted into an equi-satisfiable one in
Conjunctive Normal Form (CNF); then, a satisfying assignment is incrementally built,
until either all the clauses are satisfied, or a conflict is found, in which case back-
jumping takes place (i.e. certain assignments are undone). Keys to efficiency are
heuristics for the variable selection, and learning of conflicts [30].

Given a first-order formula ψ with non-logical symbols interpreted in a decidable
background theory T, Satisfiability Modulo Theory (SMT) [4] is the problem of decid-
ing whether there exists a satisfying assignment to the free variables in ψ. For example,
consider the formula (x ≤ y)∧((x+3 = z)∨(z ≥ y)) in the theory of real arithmetic.
The theory of real arithmetic interprets the constant symbol “3” as the real number 3
and the operators +,=, <,>,≤,≥ as the usual functions and relations. The formula
is satisfiable and a satisfying assignment is {x 7→ 5, y 7→ 6, z 7→ 8}.

In this work we primarily concentrate on the theory of linear arithmetic over the
real numbers (LRA). A formula in LRA is an arbitrary Boolean combination, a uni-
versal (∀) or an existential (∃) quantification, of atoms in the form

∑
i aixi ./ c where

./∈ {>,<,≤,≥, 6=,=}, every xi is a real variable and every ai and c is a real con-
stant. Difference logic (RDL) is the subset of LRA such that atoms have the form
xi− xj ./ c. If a formula inRDL is satisfiable, then there exists infinitely many mod-
els for such formula [13]. This is because in RDL we can only express “distances”
between variables, thus the absolute value of at least one variable can always be chosen.
We denote with QF LRA and QF RDL the quantifier-free fragments of LRA and
RDL, respectively. This means that a formula φ is in QF LRA (resp. in QF RDL)
if it is in LRA (resp. inRDL) and no first-order quantifier appears in φ.

A conjunction of atoms in LRA over n variables represents a (non-necessarily
closed) convex polyhedron in n dimensions: each point of the polyhedron is a model
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of the formula. Similarly, an LRA formula represents the union of finitely many non-
necessarily closed convex polyhedra. If φ(~x) and ψ(~x) areLRA formulae, the formula
φ(~x)→ ψ(~x) geometrically corresponds to the constraint φ(~x) ⊆ ψ(~x). Similarly, the
conjunction of two formulae corresponds to intersection, the disjunction to union and
the negation to the complement. A model µ of an LRA formula φ (µ |=LRA φ)
corresponds to a geometric point ~µ (that is the vector of values assigned by µ to each
dimension) that belongs to the region represented by φ (that is ~µ ∈ φ).

Given an LRA formula φ(~x) we denote with Atoms(φ(~x)) the set of its atoms
(
∑
xi∈~x cixi ./ b, with ci and b being rational coefficients). Given an atom a(~x) ∈

Atoms(φ(~x)) (a(~x)=̇
∑
xi∈~x cixi ./ b1), let Eq(a(~x)) =

∑
xi∈~x cixi = b. Let

Equalities(φ(~x)) be the conjunction of all the equalities in a given formula, namely
Equalities(φ(~x))=̇

∧
ai(~x)∈Atoms(φ(~x))Eq(ai(~x)) if ai(~x) =

∑
xi∈~x cixi ./ b with

./ restricted to {≤,≥,=}.
We write x − y ∈ [a, b] where x and y are variables and a and b are constants,

meaning the formula (x − y) ≥ a ∧ (x − y) ≤ b. If a is −∞ then the first conjunct
is omitted and similarly, if b is ∞ then the second conjunct is omitted. In presence
of constant bounds, we write the intervals with the usual open-closed notation: [a, b],
[a,∞) or (−∞, b] for some a, b ∈ R.

A second theory of interest for this work is the theory of Equality and Uninterpreted
Functions (EUF), in which variables range over an unspecified infinite domain and
function symbols are introduced. The only interpreted symbol in the theory is =, the
equality predicate. There is no restriction on the interpretation of function symbols:
the only property assumed for a function f is ∀x.∀y.(x = y) → (f(x) = f(y)). In
addition, we can have formulae defined over the combination of two or more theories.
For example, an atom like x = f(y + z) + w combines the + operator of LRA with
function symbols of EUF , therefore this formula is expressed in the combination of
EUF and LRA (indicated EUF ∪ LRA). Different techniques can be adopted to
address the theory combination problem (e.g. Nelson-Oppen [31], Delayed Theory
Combination [5], Model-based Theory Combination [16]).

An SMT solver [4] is a decision procedure which solves the satisfiability problem
for a formula expressed in a decidable subset of First Order Logic. The most efficient
implementations of SMT solvers use the so-called “lazy approach” [34]. In order to
decide a formula φ expressed in the theory T, a SAT solver is tightly integrated with
a T-solver, that is used to decide conjunctions of constraints in the theory T. The role
of the SAT solver is to enumerate the truth assignments to the Boolean abstraction of
the first-order formula. The Boolean abstraction has the same Boolean structure of
the first-order formula, but “replaces” the predicates which contain T information with
fresh Boolean variables. The Boolean abstraction of (x ≤ y)∧((x+3 = z)∨(z ≥ y)) is
P ∧(Q∨R), where P,Q,R are fresh Boolean variables. The T-solver is invoked when
the SAT solver finds a satisfying assignment for the Boolean abstraction: the satisfying
assignment to Boolean abstraction maps directly to a conjunction of T atoms, which
the T-solver can handle. If the conjunction is satisfiable also the original formula is

1We use the symbol =̇ to indicate a definition. We need this symbol to distinguish between the definition
from the equality as a logical predicate.
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satisfiable. Otherwise the T-solver returns a conflict set which identifies a reason for
the unsatisfiability. Then, the negation of the conflict set is learned by the SAT solver
in order to prune the search. Examples of solvers based on the “lazy approach” are
MATHSAT5 [7], Z3 [17], YICES [19] and OPENSMT [6].

In order to deal with quantifiers in LRA, many techniques have been developed
and implemented in SMT solvers. Some solvers (e.g. Z3) natively support quantifiers.
However, many others (e.g. MATHSAT5) cannot deal with them. For some theories
of interest, it is possible to apply algorithms that remove quantifiers from any given
formula in the theory. A theory T is said to admit quantifier elimination, if for every
quantified formula φ in T, there exists a quantifier-free formula φ′ that is logically
equivalent to φ. It was proved that LRA admits quantifier elimination, and there are
techniques (e.g. Fourier-Motzkin [33], Loos-Weispfenning [25, 26]) that transform any
LRA formula containing quantifiers into an equivalent QF LRA formula. These
techniques, at a cost that is doubly exponential in time and space in the original formula
size [33, 26, 25], enable for the use of solvers with no native support for quantifiers.

3. Temporal Problems with Uncertainty

The formalism of TP is used to model temporal constraints over time-valued vari-
ables representing time points. This formalism is often used to characterize scheduling
problems, where activities must be ordered in time according to some specified con-
straints. The variables in a TP typically represent the beginning time and the end time
of activities. For example, given two activitiesA1 andA2, it is possible to state that the
distance between the beginning of A1 and the end of A2 is less than or equal to 2. The
TP formalism is expressive enough to model Allen’s interval algebra [1], and also met-
ric constraints in the form of arbitrary Boolean combination of atoms (x− y) ∈ [l, u],
where x, y are time points and l, u ∈ R ∪ {+∞,−∞} [18].

Two families of TPs have been presented in literature over the years: TP with-
out Uncertainty, and TP with Uncertainty (TPU). In the first, simply called TP, all
the time points (i.e. both beginning and end points) can be decided by the sched-
uler/executor [18, 36]. The case of TPU represents the more complex situation where
the executor is only able to decide the beginning time of activities, whereas the end of
activities is to be decided by an adversarial environment [38]. In this work we focus on
TPUs.

Definition 1. A TPU is a tuple (Xc, Xu, Cc, Cf ), where Xc
.
= {b1, ..., bn} is the

set of controllable time points, Xu
.
= {e1, ..., em} (n ≥ m) is the set of uncon-

trollable time points, Cc
.
= {cc1, ..., ccm} is the set of contingent constraints, and

Cf
.
= {cf1, ..., cfh} is the set of free constraints.

cci
.
=
∨Ei

j=1(ei − bi) ∈ [lci,j , u
c
i,j ] cfi

.
=
∨Di

j=1(vi,j − wi,j) ∈ [lfi,j , u
f
i,j ]

such that: lfi,j , u
f
i,j ∈ R ∪ {+∞,−∞}, lci,j , uci,j ∈ R+, lfi,j ≤ ufi,j , l

c
i,j ≤ uci,j , Di is

the number of disjuncts for the i-th free constraint, Ei is the number of disjuncts for
the i-th contingent constraint, vi,j , wi,j ∈ Xc ∪Xu and vi,j 6= wi,j .
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Variables in Xc represent time decisions that can be controlled by the executor.
Variables in Xu represent time decisions that are under the control of the environment
(and are thus uncontrollable from the point of view of the executor). We use the letters
b and e as mnemonics for the beginning and end of activities, respectively2.

The constraints are separated in two sets: free constraints Cf are constraints that
the executor is required to fulfill; contingent constraints Cc are the assumptions that the
environment will fulfill. Intuitively, free constraints are the requirements of the prob-
lem, while contingent constraints are the assumptions under which the problem must
be solved. Notice that, differently from free constraints, each contingent constraint
is required to be expressed using exactly two variables (bi and ei) sharing the same
index i. As in [38], we consider only contingent constraints involving exactly one con-
trollable time point and one uncontrollable time point. Thus, each uncontrollable time
point ei is linked by exactly one contingent constraint to a controllable time point bi and
|Cc| = |Xu|. In fact, we have a number of controllable time points that is at least as big
as the number of uncontrollable ones (hence n ≥ m) because we allow for controllable
time points that are not linked to an uncontrollable via a contingent constraint. This
formulation is customary in the literature, and assumes a complete independence be-
tween contingent constraints: the framework can express disjunctions in the contingent
constraints but assumes the independence between different uncontrollable activities.

An example of TPU is depicted in Figure 1. The example is composed of two
activities A1 and A2. A1 starts at time point b1 and ends in e1; similarly, A2 starts at
b2 and ends in e2. The two activities have uncontrollable duration: A1 has duration
between 0 and 3 time units, while A2 lasts for at least 1 and at most 2 time units. We
require b1 to be scheduled before b2 (b2 − b1 ∈ [0,+∞)), b2 before e1 (e1 − b2 ∈
[0,+∞)), e2 to happen at most 1 time unit before e1 (e1 − e2 ∈ (−∞, 1]) and e2 at
most 2 time units after b1 (e2 − b1 ∈ (−∞, 2]).

Depending on the form of the constraints in Cc and Cf , we consider three classes
of TPUs. Definition 1 captures the most general class, referred to in the literature
definition as Disjunctive Temporal Problem with Uncertainty (DTPU) [32, 37]. If each
disjunction is restricted to refer to a single pair of variables, the resulting problem is
a Temporal Constraint Satisfaction Problem with Uncertainty (TCSPU) [32, 37]. If
disjunctions are disallowed, we obtain a Simple Temporal Problem with Uncertainty
(STPU) [38, 29, 28, 21, 22]. The problem in Figure 1 is an STPU.

Following the classification of Peintner et al. [32], we also say that a problem is
simple-natured if the contingent constraints have no disjunctions (Ei = 1 for each i).

We define an assignment to the time points as a total function from time points
to real values. Given a TP without uncertainty, checking consistency corresponds to
deciding the existence of an assignment that fulfills all the constraints of the problem.
We call such an assignment a consistent schedule, and we say that the TP is consistent.

Given a TPU, values for controllable time points can be decided, namely they can

2The TPU formalism is more general, as it allows for the representation of fully controllable activities
and of controllable time points not belonging to any activity. The bi-ei notation gives a useful intuition for
uncontrollable activities, but it is possible to have the beginning and end time points of a controllable activity
marked as bi and bj , because they both belong to Xc.
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ma

b1

b2

[0,+∞]

e2
[1, 2]

[−∞, 2]

e1

[0, 3]

[−∞, 1]

(a)

Xc = {b1, b2}
Xu = {e1, e2}
Cc = {e1 − b1 ∈ [0, 3],

e2 − b2 ∈ [1, 2]}
Cf = {b2 − b1 ∈ [0,+∞),

e1 − e2 ∈ (−∞, 1],

e2 − b1 ∈ (−∞, 2]}

(b)

Figure 1: (a) The running example of a weakly controllable STPU: nodes are time points, double-circled
nodes are uncontrollable time points; contingent constraints are depicted as dashed arrows while free con-
straints are solid. (b) The constraint definitions for the running example.

be scheduled in time by an executor, while an uncontrollable time point ei just happens
after its activation time point bi has been scheduled. The only assumption is that the i-
th contingent constraint will be satisfied by the values of bi and ei. Given this intuitive
meaning, we rephrased the concept of situation for a TPU [38] for the DTPU problem
class.

Definition 2. Let P =̇(Xc, Xu, Cc, Cf ) be a TPU where |Xu| = m. The space of
situations for P is ΩP =̇S1 × · · · × Sm, where Si=̇

⋃Ei

j=1[lci,j , u
c
i,j ]. A situation is an

element ω of ΩP .

Intuitively, a situation is a choice of the actual duration for each activity with un-
controllable duration. For example, the activity representation of the running example
in Figure 2, represents a possible situation in which yi is the duration of Ai.

For a TPU, three different problems can be addressed [38]: strong controllability,
dynamic controllability and weak controllability. In all these problems, the executor is
required to find a winning strategy, i.e. an assignment to the controllable time points
that “works” in any situation. More specifically, the assignment to the controllable
time points must fulfill all the free constraints in any situation for the given problem.
The difference depends on the extent to which the executor can use (or, observe) the
situation to decide the assignments to the controllable time points.

In strong controllability, the executor is “blind”, i.e. it cannot observe the situation
at all. Therefore, the solution to a strong controllability problem is a fixed schedule,
that assigns a time value to each controllable time point. This schedule must fulfill
all the free constraints in any situation. The example problem in Figure 1 (a) is not
strongly controllable, as there is no way of statically assign b2 without knowing in
advance the time at which e2 will happen. In fact, scheduling b2 too early could violate
the e1 − e2 ≤ 1 constraint.

In weak controllability, the executor is allowed to act based on the situation, i.e.
knowing in advance the uncontrollable durations. In this setting, the solution to a weak
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controllability problem has the form of a strategy that given a situation computes an
assignment to the controllable time points.

Dynamic controllability limits the observations of the executor to the past events
only. This problem can be seen as a restriction of weak controllability, in which it is
possible for the executor to condition the assignments to situations, as long as they have
become apparent. In other works, if a choice depends on the duration of an activity,
this must have already terminated.

In the rest of this paper, we focus on weak controllability, addressing the decision
problem (i.e. determining whether there exists a winning strategy), and the synthesis
problem (i.e. extracting such a strategy in an executable form).

We now formally define the concept of weak controllability.

Definition 3. Let P =̇(Xc, Xu, Cc, Cf ) be a TPU and let ω=̇(ω1, . . . , ω|Xu|) be a
situation in ΩP . The projection Pω of the problem P with respect to the situation ω
is the TP (Xc ∪ Xu, ∅, ∅, Cf ∪ C ′

c), where C ′
c is derived from Cc by replacing each

contingent constraint
∨Ei

j=1(ei−bi) ∈ [lci,j , u
c
i,j ] with a free constraint ei−bi ∈ [ωi, ωi].

Intuitively, the projection Pω is the problem without uncertainty in which each
uncontrollable duration has been fixed to a given value.

Definition 4. Let P =̇(Xc, Xu, Cc, Cf ) be a TPU. P is weakly controllable if and only
if for each situation ω ∈ ΩP the projection Pω is consistent.

Definition 4 captures the weak controllability concept by requiring the existence of
a schedule for each situation. This definition implicitly models a strategy as a function
f : ΩP → R|Xc| that maps each situation ω in a schedule for the controllable time
points that fulfills the constraints of the projection Pω . If such a function exists, the
problem is weakly controllable.

Weak controllability is, in terms of games, the dual of strong controllability: in
strong controllability, the executor is required to make its move (i.e. all its decisions)
without observing the situation (i.e. the move of the environment); in weak controlla-
bility, the environment is required to make all its decisions before the executor.

Finally, we note that the constraints of a TPU are essentially RDL formulae. As
such, if there exists a weak strategy that fulfills all the problem constraints, there are
infinitely many other strategies obtained by adding the same constant value to each
strategy decision. In the example of Figure 1, the value of b1 can be arbitrarily chosen
because it precedes all the other time points, and the chosen value acts only as a shift
for all the other time points.

4. Deciding Weak Controllability

In order to logically define weak controllability, we first perform some manipu-
lations on the problem definition. We encode each uncontrollable time point ei in
terms of the time difference with its starting time point bi by means of an uncontrol-
lable duration variable yi. Intuitively, if we take an activity view, yi measures the
duration of the i-th activity. For every contingent constraint cci =

∨Ei

j=1(ei − bi) ∈
[li,j , ui,j ], let yi ∈ R be the uncontrollable duration variable associated to ei such

10



t

b1

b2

e1

e2

A2

A1

y1

y2

Figure 2: The running example seen from an activities point of view to explain the encoding of the problem.
The striped regions are the uncontrollable space, namely where an uncontrollable time point can be scheduled
given the decision on the related controllable time point. Each contingent constraint is seen as an activity
(A1 and A2 in the picture) and the duration yi is the actual duration of the i-th activity.

that
∨Ei

j=1(yi ∈ [li,j , ui,j ]). yi represents the duration of the interval [bi, ei] that is
constrained by the i-th contingent constraint. We are thus symbolically encoding a sit-
uation ω=̇(ω1, . . . , ω|Xu|) in which yi models the value of ωi. Figure 2 gives a pictorial
representation of this encoding interpreted at the activity level.

Definition 5. Given a TPU (Xc, Xu, Cc, Cf ), let ~Yu be the vector of uncontrollable
duration variables (y1, y2, . . . , ym), with m = |Xu|. We define the encoding of the
problem as a tuple ( ~Xc, ~Yu,Γ(~Yu),Ψ( ~Xc, ~Yu)) where

Γ(~Yu)=̇

m∧
i=1

Ei∨
j=1

(yi ∈ [li,j , ui,j ])

and

Ψ( ~Xc, ~Yu)=̇
∧

cfi∈Cf

cfi[( ~Xc + ~Yu)/ ~Xu]( ~Xc, ~Yu)

=̇
∧

cfi∈Cf

cfi[(b1 + y1)/e1][(b2 + y2)/e2] . . .[(bm + ym)/em]( ~Xc, ~Yu).

Intuitively, Γ(~Yu) is the formula representing the conjunction of all the contingent
constraints after the recoding, and Ψ( ~Xc, ~Yu) is the conjunction of all the free con-
straints rewritten in terms of ~Xc and ~Yu.

We remark that the use of this encoding yields two consequences. First, thanks
to the redefinition of each ei in terms of yi, we managed to encode the contingent
constraints in terms of ~Yu only, therefore they are independent of the values of the con-
trollable time points ( ~Xc). Intuitively, Γ(~Yu) encodes the set of all possible situations
(ΩP ) for the given problem P : each model of Γ(~Yu) corresponds to a situation ω. Sec-
ond, the constraints in this formulation are expressed in the LRA theory (the original
formulation was expressed in the RDL fragment of LRA). This encoding applied to
the STPU problem in Figure 1 is shown in Figure 3.

From here on, we assume an encoded problem ( ~Xc, ~Yu,Γ(~Yu),Ψ( ~Xc, ~Yu)) is given.
Intuitively, a temporal problem is weakly controllable if there exists a strategy that
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Xc = {b1, b2}
Yu = {y1, y2}

Γ(~Yu) = (y1 ≥ 0) ∧ (y1 ≤ 3) ∧ (y2 ≥ 1) ∧ (y2 ≤ 2)

Ψ( ~Xc, ~Yu) = (b2 − b1 ≥ 0)∧
((b1 + y1)− (b2 + y2) ≤ 1)∧
((b2 + y2)− b1 ≤ 2)

Figure 3: The encoding of the example STPU of Figure 1.

maps every situation to a corresponding assignment to controllable time points, in such
a way that all free constraints are satisfied. We can rephrase the concept of weak con-
trollability presented in Definition 4 as a satisfiability problem modulo theLRA theory
as follows.

Proposition 1. LetP =̇(Xc, Xu, Cc, Cf ) be a TPU and let ( ~Xc, ~Yu,Γ(~Yu),Ψ( ~Xc, ~Yu))
be its encoding. P is weakly controllable if and only if the following formula is valid
in the LRA theory.

∀~Yu.∃ ~Xc.(Γ(~Yu)→ Ψ( ~Xc, ~Yu)) (1)

The formula in Equation 1 is a direct formalization of the intuitive notion of weak
controllability, and of the original definition in [38]. The universal quantifier captures
the uncertainty in the decision of the duration variables. The implication ensures that
free constraints are checked only when Γ(~Yu) is satisfied, that is only on assignments
that encode situations of the original temporal problem. In fact, if Γ(~Yu) is not satisfied,
the implication is automatically satisfied.

If we interpret the vector of time points ~Xc and the vector of durations ~Yu as vec-
tors of real variables, and the set of constraints Γ(~Yu) and Ψ( ~Xc, ~Yu) as formulae in
QF LRA, Equation 1 becomes a formula in LRA that is valid if and only if the
problem is weakly controllable.

For example, the problem depicted in Figure 1 (a) is weakly controllable if and
only if the following formula is valid.

∀y1, y2.∃b1, b2.(((y1 ≥ 0) ∧ (y1 ≤ 3) ∧ (y2 ≥ 1) ∧ (y2 ≤ 2))→
((b2 − b1 ≥ 0) ∧ ((b1 + y1)− (b2 + y2) ≤ 1) ∧
((b2 + y2)− b1 ≤ 2)))

Looking at the weak controllability formal characterization in Proposition 1 from
an SMT perspective, it is clear that we are solving the validity problem of an LRA
formula. Any SMT solver supporting LRA is able to deal with such a formula directly
and it can correctly solve the problem. However, due to the high computational cost of
directly handling quantifiers, an optimized encoding is required.

We first rewrite the formula encoding weak controllability in Proposition 1 by trans-
forming the external universal quantifier into the negation of an existential one, and we
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¬∃b1, b2.((y1 ≥ 0) ∧ (y1 ≤ 3)∧
(y2 ≥ 1) ∧ (y2 ≤ 2))→
((b2 − b1 ≥ 0)∧
((b1 + y1)− (b2 + y2) ≤ 1)∧
((b2 + y2)− b1 ≤ 2))

(a)

(y1 ≥ 0) ∧ (y1 ≤ 3)∧
(y2 ≥ 1) ∧ (y2 ≤ 2)∧
¬∃b1, b2.((b2 − b1 ≥ 0)∧

((b1 + y1)− (b2 + y2) ≤ 1)∧
((b2 + y2)− b1 ≤ 2))

(b)

Figure 4: Inverted encoding (a) and assumption-extraction encoding (b) applied to the running example
STPU of Figure 1.

consider the negation of the resulting formula. We call the resulting formula inverted
encoding.

¬∃ ~Xc.(Γ(~Yu)→ Ψ( ~Xc, ~Yu)) (2)

If this formula is unsatisfiable, then the problem is weakly controllable, while if it is
satisfiable, then the problem is not weakly controllable. Note that in Equation 2 we
dropped the outermost ¬∃~Yu as any SMT problem is inherently an existential quan-
tification and we consider the negation by reversing the interpretation of the result.
Intuitively, we are searching for an assignment to the uncontrollable time points that is
able to violate the free constraints under any possible strategy (it is a winning strategy
for the environment). In fact, if the formula is satisfiable, each model corresponds to a
situation for which no strategy of controllable time-point assignment exists. Therefore,
differently from Equation 1, this encoding is also helpful for debugging a non-weakly
controllable problem. This encoding still requires a solver with full support of LRA,
but is able to exploit the searching power of the SMT framework and, in case of non-
weak controllability, it allows for the extraction of debug information by providing a
model of the formula. An example of this encoding for the running example problem
is shown in Figure 4 (a).

A further improvement can be achieved by limiting as much as possible the scope
of the existential quantifier. To this extent, we push the existential quantifier over the
implication, and thus the quantification is limited to the free constraints only (ref. as
assumption-extraction encoding):

Γ(~Yu) ∧ ¬∃ ~Xc.Ψ( ~Xc, ~Yu). (3)

The assumption-extraction encoding for the running example problem is reported in
Figure 4 (b).

The following proposition states that the inverted and assumption-extraction en-
codings are logically equivalent.

Proposition 2. Equation 2 and Equation 3 are logically equivalent.

Proof. We show how to convert Equation 2 into Equation 3, using logically equivalent
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rewritings.

¬∃ ~Xc.(Γ(~Yu)→ Ψ( ~Xc, ~Yu))

⇔¬∃ ~Xc.(¬Γ(~Yu) ∨Ψ( ~Xc, ~Yu))

⇔¬((∃ ~Xc.¬Γ(~Yu)) ∨ (∃ ~Xc.Ψ( ~Xc, ~Yu)))

⇔¬(¬Γ(~Yu) ∨ (∃ ~Xc.Ψ( ~Xc, ~Yu)))

⇔ Γ(~Yu) ∧ ¬(∃ ~Xc.Ψ( ~Xc, ~Yu))

5. Strategies for Weak Controllability

We now consider the problem of actually executing a control strategy that is as-
sociated with a given weakly controllable TPU. A TPU is a modeling framework that
represents a set of assumptions over the environment and imposes a set of requirements
to be fulfilled. We consider the use-case in which a strategy for scheduling the con-
trollable time points is repeatedly executed by reading the inputs from the environment
in the form of a situation. Such a situation is generated by reading the parameters
on which the uncontrollable durations depends, by means of appropriate sensors and
estimators. The strategy computes an assignment to the controllable time points that
fulfills the problem constraints and is then deployed to an actuator for execution.

The problem we tackle here is to automatically synthesize such a strategy: we dis-
cuss two approaches. First, we use a TP solver to do on-line reasoning, thus executing
a control strategy that is implicitly defined in the TPU, if solvable. Then, we investigate
the idea of explicit strategies, that can be readily executed without resorting to on-line
reasoning.

5.1. Implicit strategies

A way of obtaining a strategy for a weakly controllable TPU is given by Defini-
tion 3 and depicted in Figure 5: when a situation S̄ is read3, we eliminate the un-
certainty by substituting the uncontrollable duration variables in the TPU formulation
with the values obtained from the situation (obtaining a TP that is the projection of the
TPU). Then, we solve the resulting temporal problem, that is now without uncertainty,
and return the assignment to the controllable time points X̄c for execution. Formally,
given the encoding of a TPU ( ~Xc, ~Yu,Γ(~Yu),Ψ( ~Xc, ~Yu)) and an assignment to all the
uncontrollable durations S̄ fulfilling Γ(S̄) (a situation), we can find an assignment to
the controllable variables ~Xc by finding a model for the formula Ψ( ~Xc, S̄). This strat-
egy requires a solver to be executed once the situation S̄ is known. In practice, we
can implement this idea using any SMT solver by searching for a model for Ψ( ~Xc, S̄).
However, this approach (called IMPLICIT-SMT) requires one to solve a separate SMT
problem for each situation. A more advanced approach is to exploit the incrementality

3S̄ is a vector of |~Yu| rational numbers, one for each uncontrollable duration.
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Implicit strategy execution

TPU = ( ~Xc, ~Yu,Γ(~Yu),Ψ( ~Xc, ~Yu))

TP =
( ~Xc, ∅, ∅,Ψ( ~Xc, S̄)) TP Solver

+
~Yu → S̄

PlantParameter
Estimation

S̄ X̄c

Figure 5: Schematic view of implicit strategy mechanism. The strategy is repeatedly executed once a situa-
tion is obtained by estimating the relevant parameters in the Plant. The output of the strategy is a controllable
schedule (i.e. an assignment X̄c to all the controllable time points). The implicit strategy works by “project-
ing away” the uncertainty in the TPU: the uncontrollable durations ~Yu are substituted with the actual values
of the situation S̄. Then, a TP is obtained and is solved using a TP solver, yielding the assignment (X̄c) to
the controllable time points.

feature of modern SMT solvers [4], allowing the solver to “recycle” discovered clauses
and lemmas among different situations. For this purpose, we designed an incremental
approach, described in Algorithm 1. IMPLICIT-SMT-INCREMENTAL takes the encod-
ing of a TPU ( ~Xc, ~Yu,Γ(~Yu),Ψ( ~Xc, ~Yu)), and initializes the SMT solver by asserting
the problem constraints Ψ( ~Xc, ~Yu). Then, it enters a (possibly infinite) loop, and pro-
cesses a sequence of situations S̄1, S̄2, · · · . The problem description is asserted in the
solver once and for all, while the situation is first asserted, and once an assignment is
found, it is retracted.

The main drawback of the implicit approach is the requirement of on-line reason-
ing. In fact, once the situation is known, a solver is invoked to discover the assignment
for the controllable time points. Solving the TP resulting from the projection of a TPU
is hard in general. If the problem belongs to the STPU problem class the resulting STP
can be solved in polynomial time, but for the general case of DTPU, the projection
results in a DTP that is, in general, NP-hard [37]. In addition, having a solver as part
of the run-time may require much more expensive platforms.

5.2. Explicit strategies
We avoid the burden of on-line reasoning by providing techniques for the synthesis

of functions that are simple and fast to execute. Consider the formalization in Propo-
sition 1. Interestingly, we can apply skolemization [24], thus replacing the existential
quantifier by means of a fresh function symbol.

Theorem 1. A TPU (Xc, Xu, Cc, Cf ) is weakly controllable if and only if the formula

∀~Yu.Γ(~Yu)→ Ψ(f(~Yu), ~Yu). (4)

is satisfiable.
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Algorithm 1 Implicit strategy execution based on SMT with incrementality

1: procedure IMPLICIT-SMT-INCREMENTAL(Γ(~Yu), Ψ( ~Xc, ~Yu))
2: for all bi ∈ ~Xc do
3: SMT.DECLAREREALVAR(bi)
4: for all yj ∈ ~Yu do
5: SMT.DECLAREREALVAR(yi)
6: SMT.ASSERT(Ψ( ~Xc, ~Yu))
7: loop
8: S̄ ←WAITFORSITUATION()
9: SMT.PUSH()

10: for all yi ∈ ~Yu do
11: SMT.ASSERT(yi = S̄i)
12: if SMT.SOLVE = SAT then
13: µ← SMT.GETMODEL()
14: EXCECUTETIMEPOINTS(µ)
15: else
16: ⊥ . Unreachable if the problem is WC and the situation S fulfills Γ(~Yu)

17: SMT.POP()
18: end loop
19: end procedure

Proof. Equation 4 is the result of applying the skolemization [24] procedure to Equa-
tion 1. Since skolemization produces an equi-satisfiable formula, Equation 4 is equi-
satisfiable to Equation 1. Since Equation 1 has no free variables nor has uninterpreted
terms, satisfiability coincides with validity. Therefore Equation 1 is valid if and only if
Equation 4 is satisfiable, and Proposition 1 states that the TPU is weakly controllable
if and only if Equation 1 is valid.

We transform the inner existential quantifier into a function f that models the weak
strategy for the problem. In fact, in Equation 4, the interpretation of the function f
is exactly a strategy that solves the problem. Equation 4 gives a clear vision of what
a strategy is: a function that gets in input the uncontrollable durations and returns an
assignment to the controllable time points that fulfills all the problem constraints.

In principle, one would like to exploit this formulation to query an SMT solver,
and extract, from the model, a closed form for the strategy f . However, Equation 4
is a quantified first-order formula involving uninterpreted functions4, that is in general
undecidable.

In the following, we focus on two types of strategies: linear strategies, where each
controllable variable is computed as a linear combination of the uncontrollable du-
rations; piecewise-linear strategies, where different linear strategies are executed de-

4Formally, Equation 4 is a quantified first-order formula expressed in the theory combination of LRA
and the theory of uninterpreted functions (EUF) [4].
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pending on the input situation.
From here on, we assume the encoding ( ~Xc, ~Yu,Γ(~Yu),Ψ( ~Xc, ~Yu)) of a TPU is

given. In general, a weak strategy is a function that maps each assignment to un-
controllable durations satisfying Γ(~Yu) (i.e. each situation) into an assignment to the
controllable time points, such that all the free constraints are satisfied.

Definition 6. A weak strategy for a TPU is a function f : R|Yu| → R|Xc| defined for
every point ~Yu in Γ(~Yu) and such that Ψ(f(~Yu), ~Yu) holds for every ~Yu in Γ(~Yu).

Note that, this definition does not impose any constraint (e.g. linearity, continuity) on
f other than being a function.

In Definition 6 we modeled a weak strategy as a single function f : R|Yu| → R|Xc|,
but we can equivalently consider a set of functions f1, . . . , f|Xc| each computing a
schedule for a single controllable time point given the situation. The two formalizations
are equivalent because if there exists a unique function f , we can obtain the set of
function by projection of f and vice-versa.

Let f̄(~Yu) : R|Yu| → R|Xc| be a strategy. The strategy imposes a relation between
the controllable time points and the uncontrollable durations: ~Xc = f̄(~Y ). If such a
relation is expressible as a formula in a theory T we can check whether f̄ is a weak
strategy for a given temporal problem by checking the existence of a point in Γ(~Yu)
that violates the free constraints.

Γ(~Yu) ∧ ¬Ψ( ~Xc, ~Yu) ∧ ( ~Xc = f̄(~Yu)) (5)

If Equation 5 is satisfiable modulo T ∪QF LRA, then f̄(~Yu) is not a valid weak strat-
egy, because there exists a situation for which the strategy violates the free constraints.
In this case, T can be any theory needed to express the relation imposed by the strat-
egy, for example it could be LRA or even Nonlinear Real Arithmetic. Note that, this
check is very useful in practice if f̄(~Yu) can be expressed in QF LRA because the
entire check would fit inQF LRA. In the following, we describe two possible shapes
of strategies, namely linear and piecewise-linear. Both the shapes can be expressed
in QF LRA. Therefore checking if such strategies are weak strategies for a given
problem is possible by performing a single call to an SMT solver in QF LRA.

Linear strategies. A linear strategy is such that the value of every controllable time
point is obtained as a linear combination of ~Yu. Let n .

= |Xc| and m .
= |Xu|. A

linear strategy can be represented with a matrix A of real coefficients of size n × m
and a vector ~c of size n. Every controllable variable is scheduled according to a linear
function of the uncontrollable durations. The strategy f(~Yu) can be then expressed as
A · ~Yu + ~c in which each bi ∈ Xc can be computed as Ai,1y1 + . . . + Ai,mym + ci.
Therefore, the matrix A must have one column for every duration and the vector ~c
contains the constant additive terms. The problem of synthesizing a linear strategy is
then equivalent to the problem of finding a suitable matrix A and vector ~c.

Piecewise-linear strategies. A more general form of strategy is the piecewise-linear
strategy, that is the composition of a finite number of linear strategies. A piecewise-
linear strategy is defined by cases over a finite partition of the situations (a partition
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of the region represented by Γ(~Yu)). For each case we have a linear strategy that is
a valid weak strategy for that subset of the situations. We can compose these linear
strategies by first checking in which element of the partition the observed situation
belongs, and then applying the corresponding linear strategy. In this setting, a linear
strategy is a particular case of a piecewise-linear strategy in which we have a partition
of cardinality one.

Definition 7. A piecewise-linear strategy is a function

f(~Yu)
.
=


f1(~Yu) if η1(~Yu)

f2(~Yu) else if η2(~Yu)

...

fk(~Yu) else if ηk(~Yu)

where each f i is a linear strategy and ηi(~Yu) are sub-regions of Γ(~Yu) such that
Γ(~Yu) ⊆ (

⋃k
i=1 η

i(~Yu)).

Note that, even this kind of strategy can be directly encoded in QF LRA. We call
each pair (f i(~Yu), ηi(~Yu)) a “piece” of the strategy. In order to compactly represent
a piecewise-linear strategy in the algorithms we abstract a piecewise-linear strategy
f(~Yu) as the ordered list of its pieces. For example, the strategy f(~Yu) in Definition 7
can be represented as the following list of pieces:

[(f1(~Yu), η1(~Yu)), (f2(~Yu), η2(~Yu)), . . . , (fk(~Yu), ηk(~Yu))].

Following Definition 7, no continuity requirement is imposed on a piecewise-linear
strategy. Continuity is not required by the weak controllability definition and is not
a useful requirement for our setting, as we assume that the parameters yielding the
situation are fully specified before scheduling the problem. Continuity is instead an
important issue in dynamic strategies as small variations in the situation should not
yield substantial variations in the strategy outcome. However this discussion is out of
the scope of this paper.

Linearity is not enough. A linear strategy is very useful in practice: it is compact to
represent and easy to evaluate. In fact, it can be represented using just a matrix and a
vector; moreover, given an assignment to the uncontrollable duration, we can compute
the resulting assignment to the controllable variables by means of a single matrix mul-
tiplication. In general, unfortunately, a weakly controllable TPU is not guaranteed to
have such a strategy. In fact, this holds even for the STPU class of problems.

Theorem 2. There exists an STPU that is weakly controllable and does not have any
linear strategy.

Proof. Let us consider the STPU depicted in Figure 6 obtained by adding the constraint
e1 − b2 ∈ [0,+∞) to the running example in Figure 1. In the following we show that
this STPU is weakly controllable, but there exists no linear strategy.
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b1

b2

[0,+∞]

e2
[1, 2]

[−∞, 2]

e1

[0, 3]

[0,+∞]

[−∞, 1]

(a)

Xc = {b1, b2}
Xu = {e1, e2}
Cc = {e1 − b1 ∈ [0, 3],

e2 − b2 ∈ [1, 2]}
Cf = {b2 − b1 ∈ [0,+∞),

(∗) e1 − b2 ∈ [0,+∞),

e1 − e2 ∈ (−∞, 1],

e2 − b1 ∈ (−∞, 2]}

(b)

Figure 6: (a) The modified running example STPU: the problem is weakly controllable, but does not have
any linear strategy. (b) The constraint definitions for the modified running example.

y1

y2

b2

12

3

(a)

y1 y2

b2

1 23

(b)

Figure 7: (a) The region of feasibility of the STPU in Figure 3 with b1 = 0 in the space of b2, y1 and y2,
depicted from two different angles.

The problem is weakly controllable, because we can apply the following piecewise-
linear weak strategy.

(
b1
b2

)
= f(y1, y2)=̇



(
0

y1 − y2 − 1

)
if (y2 ≤ y1 − 1)(

0

0

)
otherwise

This strategy corresponds to the following assignments.

b1 = 0

b2 =

{
y1 − y2 − 1 if (y2 ≤ y1 − 1)

0 otherwise
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This strategy clearly covers the entire uncontrollable space because it is a total function.
Given this strategy, the free constraints are always satisfied: assuming Γ(y1, y2) and
y2 > y1 − 1, the formula Ψ( ~Xc, ~Yu) reduces to

Ψ(f(y1, y2), y1, y2)=̇ (0− 0 ≥ 0) ∧ ((0 + y1)− 0 ≥ 0)∧
((0 + y1)− (0 + y2) ≤ 1)∧
((0 + y2)− 0 ≤ 2)

⇔ (y1 ≥ 0) ∧ (y1 − y2 ≤ 1) ∧ (y2 ≤ 2).

(6)

The atoms (y1 ≥ 0) and (y2 ≤ 2) follow from the assumptions of Γ(y1, y2) while the
atom (y1 − y2 ≤ 1) is entailed by the condition of the piece: y2 > y1 − 1.

Considering the other piece, namely the case y2 ≤ y1− 1, we obtain the following.

Ψ(f(y1, y2), y1, y2)=̇ (y1 − y2 − 1− 0 ≥ 0) ∧ ((0 + y1)− (y1 − y2 − 1) ≥ 0)∧
((0 + y1)− (y1 − y2 − 1− y2) ≤ 1)∧
((y1 − y2 − 1 + y2)− 0 ≤ 2)

⇔ (y2 ≤ y1 − 1) ∧ (y2 ≥ 1) ∧ (1 ≤ 1) ∧ (y1 ≤ 3)

(7)

The atoms (y2 ≥ 1) and (y1 ≤ 3) follow from the assumptions of Γ(y1, y2) while the
atom (y2 ≤ y1 − 1) is exactly the condition of the piece we are considering.

We now show that no linear strategy exists for the given problem. For the sake
of contradiction, let us suppose that a linear strategy exists for the problem. Let
f̄(~Yu)=̇A · ~Yu + ~c be such a linear strategy. Then, b1=̇A1,1y1 + A1,2y2 + c1 and
b2=̇A2,1y1 + A2,2y2 + c2. If f̄(~Yu) is a valid weak linear strategy, it must fulfill
the problem constraints in all the situations. Let us consider four particular situations,
namely ω1 = (0, 1) (that is, yi=̇0 and y2=̇1), ω2 = (0, 2), ω3 = (3, 1) and ω4 = (3, 2).

We can now build the following system obtained by instantiating each constraint of
Ψ(b1, b2, y1, y2) in each of the four picked situations, and by substituting each bi with
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its strategy definition.

(A2,1 · 0 +A2,2 · 1 + c2)− (A1,1 · 0 +A1,2 · 1 + c1) ≥ 0

(A1,1 · 0 +A1,2 · 1 + c1 + 0)− (A2,1 · 0 +A2,2 · 1 + c2) ≥ 0

(A1,1 · 0 +A1,2 · 1 + c1 + 0)− (A2,1 · 0 +A2,2 · 1 + c2 + 1) ≤ 1

(A2,1 · 0 +A2,2 · 1 + c2 + 1)− (A1,1 · 0 +A1,2 · 1 + c1) ≤ 2

(A2,1 · 0 +A2,2 · 2 + c2)− (A1,1 · 0 +A1,2 · 2 + c1) ≥ 0

(A1,1 · 0 +A1,2 · 2 + c1 + 0)− (A2,1 · 0 +A2,2 · 2 + c2) ≥ 0

(A1,1 · 0 +A1,2 · 2 + c1 + 0)− (A2,1 · 0 +A2,2 · 2 + c2 + 2) ≤ 1

(A2,1 · 0 +A2,2 · 2 + c2 + 2)− (A1,1 · 0 +A1,2 · 2 + c1) ≤ 2

(A2,1 · 3 +A2,2 · 1 + c2)− (A1,1 · 3 +A1,2 · 1 + c1) ≥ 0

(A1,1 · 3 +A1,2 · 1 + c1 + 3)− (A2,1 · 3 +A2,2 · 1 + c2) ≥ 0

(A1,1 · 3 +A1,2 · 1 + c1 + 3)− (A2,1 · 3 +A2,2 · 1 + c2 + 1) ≤ 1

(A2,1 · 3 +A2,2 · 1 + c2 + 1)− (A1,1 · 3 +A1,2 · 1 + c1) ≤ 2

(A2,1 · 3 +A2,2 · 2 + c2)− (A1,1 · 3 +A1,2 · 2 + c1) ≥ 0

(A1,1 · 3 +A1,2 · 2 + c1 + 3)− (A2,1 · 3 +A2,2 · 2 + c2) ≥ 0

(A1,1 · 3 +A1,2 · 2 + c1 + 3)− (A2,1 · 3 +A2,2 · 2 + c2 + 2) ≤ 1

(A2,1 · 3 +A2,2 · 2 + c2 + 2)− (A1,1 · 3 +A1,2 · 2 + c1) ≤ 2

This system can be rewritten as follows.

−A1,2 +A2,2 − c1 + c2 ≥ 0

A1,2 −A2,2 + c1 − c2 ≥ 0

−A1,2 +A2,2 − c1 + c2 ≥ 0

A1,2 −A2,2 + c1 − c2 ≥ −1

−2A1,2 + 2A2,2 − c1 + c2 ≥ 0

2A1,2 − 2A2,2 + c1 − c2 ≥ 0

−2A1,2 + 2A2,2 − c1 + c2 ≥ −3

+2A1,2 − 2A2,2 + c1 − c2 ≥ 0

−3A1,1 −A1,2 + 3A2,1 +A2,2 − c1 + c2 ≥ 0

3A1,1 +A1,2 − 3A2,1 −A2,2 + c1 − c2 ≥ −3

−3A1,1 −A1,2 + 3A2,1 +A2,2 − c1 + c2 ≥ 1

3A1,1 +A1,2 − 3A2,1 −A2,2 + c1 − c2 ≥ −1

−3A1,1 − 2A1,2 + 3A2,1 + 2A2,2 − c1 + c2 ≥ 0

3A1,1 + 2A1,2 − 3A2,1 − 2A2,2 + c1 − c2 ≥ −3

−3A1,1 − 2A1,2 + 3A2,1 + 2A2,2 − c1 + c2 ≥ 0

−3A2,1 − 2A2,2 + 3A1,1 + 2A1,2 + c1 − c2 ≥ 0

The system admits no solution in the real numbers. Therefore there exists no linear
strategy for the given problem as there exists no assignment to the coefficients that are
able to fulfill the four situations at the same time.
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In order to graphically explain the reason why no linear strategy exists for the given
problem, we plotted the space of free constraints of the STPU problem in the space
(y1, y2, b2) regions in Figures 7 (a) and 7 (b) (without loss of generality, we assigned
b1 = 0 as we can always freely assign a reference controllable time point thanks to the
RDL property of shifting solutions). The plot clearly shows that there exists no linear
strategy for b2. Considering the vertex (0, 1) in the space (y1, y2), a linear solution
must contain point (0, 1, 0) as it is the only feasible point for the vertex (0, 1). Simi-
larly, considering (0, 2) we must include (0, 2, 0); considering (3, 1) we must include
(3, 1, 1) and for (3, 2) the linear solution must include the point (3, 2, 0). However,
no linear solution can exist because no plane contains all the four points. In fact, the
only plane containing (0, 1, 0), (0, 2, 0) and (3, 2, 0) is b2 = 0, but this plane does not
contain the point (3, 1, 1).

We can also exploit the encodings for the decision problem to show that the STPU
in Figure 6 is weakly controllable. The inverted SMT encoding of Equation 2 for the
example problem is as follows.

¬∃b1, b2.((y1 ≥ 0) ∧ (y1 ≤ 3) ∧ (y2 ≥ 1) ∧ (y2 ≤ 2))→
((b2 − b1 ≥ 0) ∧ ((b1 + y1)− b2 ≥ 0)∧
((b1 + y1)− (b2 + y2) ≤ 1))∧
((b2 + y2)− b1 ≤ 2)

(8)

This formula can be shown to be unsatisfiable by any LRA SMT solver. Therefore
the problem is indeed weakly controllable. The unsatisfiability of the formula is also
shown by Equations 6 and 7 that provide a witness strategy for the existential quantifier,
making the formula false. In fact, if (y2 > y1 − 1) holds, Equation 8 is unsatisfiable
because b1 = 0 and b2 = 0 is a model of Equation 6. Similarly, if (y2 ≤ y1 − 1)
holds, Equation 8 is unsatisfiable because b1 = 0 and b2 = y1 − y2 − 1 is a model of
Equation 7.

Piecewise-linear strategy is enough. We now prove that a piecewise-linear strategy
always exists for any weakly controllable TPU.

Theorem 3. For any given TPU P , if P is weakly controllable, then P admits a
piecewise-linear strategy.

Proof. Let ( ~Xc, ~Yu,Γ(~Yu),Ψ( ~Xc, ~Yu)) be the encoding of P . Since P is weakly con-
trollable, we know that

∀~Yu.∃ ~Xc.Γ(~Yu)→ Ψ( ~Xc, ~Yu)

is valid.
We want to prove that there exists a piecewise-linear strategy f such that

∀~Yu.(Γ(~Yu) ∧ ~Xc = f(~Yu))→ Ψ( ~Xc, ~Yu)

is valid.
By construction, both Γ(~Yu) and Ψ( ~Xc, ~Yu) are formulae in QF LRA and hence

they geometrically correspond to the union of finitely many closed convex polyhedra
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(the polyhedra are closed because all the inequalities are non-strict by problem defini-
tion).

We now show that from each face we can extract a linear strategy that correctly
work for a sub-region of Γ(~Yu). By combining these linear strategies for all the faces
of the polyhedron we obtain a weak strategy for P .

Without loss of generality we can assume Ψ( ~Xc, ~Yu) being a bounded set (mean-
ing that it can be completely contained in a ball of finite radius). This is because
we already have bounds for all the uncontrollable variables in Γ(~Yu) (because of the
assumptions in Definition 1) and we can always add upper and lower bounds on con-
trollable variables as follows. Since the problem is weakly controllable, let g(~Y ) be
any weak strategy. For each variable x ∈ ~Xc, let ux=̇max({g(~Yu) | ~Yu |= Γ(~Yu)})
and lx=̇min({g(~Yu) | ~Yu |= Γ(~Yu)}). We can then add the following constraint to the
problem without altering its weak controllability: x ∈ [lx, ux].

Let φ1( ~Xc, ~Yu), · · · , φw( ~Xc, ~Yu) be the formulae corresponding to the faces of
Ψ( ~Xc, ~Yu). Each face φz( ~Xc, ~Yu) is a convex polyhedron and can be expressed as
a system of inequalities A( ~Xc|~Yu) ≤ b with at least one inequality satisfied as an
equality. From this system is easy to extract a linear strategy fz(~Yu) by reducing the
augmented matrix (A|b) into reduced row echelon form and applying substitution to
extract the relation between ~Xc and ~Yu in closed form.

For each face φz( ~Xc, ~Yu) we define its projection χz(~Yu)=̇∃ ~Xc.φ
z( ~Xc, ~Yu). Since

QF LRA admits quantifier elimination, also χz(~Yu) can be expressed as aQF LRA
formula, and geometrically corresponds to a finite union of convex polyhedra.

Therefore, we can build the piecewise-linear weak strategy f defined as follows.

f(~Yu)
.
=


f1(~Yu) if χ1(~Yu)

f2(~Yu) else if χ2(~Yu)

...

fk(~Yu) else if χk(~Yu)

Clearly, ∀~Yu.(
∨w
i=1 χ

i(~Yu))→ Γ(~Yu) because we know that P is weakly control-
lable and we assumed Ψ( ~Xc, ~Yu) to be bounded (being bounded, the projection of all
the faces corresponds to the projection of the polyhedral union itself). In addition, each
fz(~Yu) applied to a point in χz(~Yu) yields a point belonging to a face of the polyhe-
dron, hence belonging to Ψ( ~Xc, ~Yu). Thus, the strategy is a valid weak strategy for
P .

6. Synthesis of strategies for Weak Controllability

We are interested in generating strategies that can be efficiently executed once the
situation is known. Given this requirement, linear strategies are very helpful, because
they are compact (the size is quadratic in the number of time points) and can be exe-
cuted by performing a linear computation in the size of the strategy. Piecewise-linear
strategies are also helpful because they can be executed in linear time in the size of the
strategy as they require only a case switch before applying the linear executor.
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The problem of synthesizing weak strategies can be classified along two dimen-
sions; we distinguish between (i) convex (STPU) vs. disjunctive (DTPU) temporal
problems and (ii) linear vs. piecewise-linear strategies. Table 1 summarizes this clas-
sification and indicates the algorithms we developed for each problem class.

Strategy Type

Linear Piecewise-Linear

Convex VERTEXENCODING (Section 6.1.1) SIMPLEXESDECOMPOSITION (Section 6.2.1)

(STPU) INCREMENTALWEAKENING (Section 6.1.2) LAZYEXPANSION (Section 6.2.2)

Disjunctive
NRA ENCODING (Section 6.3)

SKINCRAWLER (Section 6.4.1)

(DTPU) CONVEXREGIONENUMERATOR (Section 6.4.2)

Table 1: Overview of the developed algorithms with references to the section that describes each of them.

All the algorithms assume that the given problem is weakly controllable, but it is not
known in advance whether the problem admits a linear strategy. Thus, the algorithms
listed in the “Linear” column of Table 1 return ⊥ in case no linear strategy exists. The
others are guaranteed to find a piecewise-linear strategy. In the rest of this section we
analyze each combination of temporal problem class and strategy type separately.

SMT notation. In the following, we present algorithms that use different features pro-
vided by modern SMT solvers, such as optimization [35]. We indicate with the pre-
fix “SMT.” the functions that are related with SMT solving. In particular, the func-
tion SMT.DECLARETYPEVAR(v) declares an SMT variable named v with type TYPE
(e.g. SMT.DECLAREREALVAR(v) is the function that declares a real-valued SMT
variable). SMT.SOLVE(φ(~x)) is a function that checks the satisfiability of the for-
mula φ(~x) and returns “SAT” if and only if the formula is satisfiable, otherwise the
function returns “UNSAT”. SMT.GETMODEL() returns a satisfying assignment to the
formula that was checked using SMT.SOLVE if the answer was “SAT”. Finally, the
function SMT.SOLVEMAXIMIZING(φ(~x), h(~x)) behaves like SMT.SOLVE(φ(~x)) but
generates the model that maximizes the function h(~x).

In an incremental setting [7, 17], we assume a stateful SMT solver that has the
following capabilities. SMT.ASSERT(φ(~x)) conjoins the formula φ(~x) to the state of
the SMT solver without performing any solving operation. SMT.PUSH() records a
backtrack point in the sate of the SMT solver in a stack. The last recorded state can
be restored by calling the SMT.POP() function. Finally, when using incrementality we
assume that the SMT.SOLVE function can be called without arguments to check the
satisfiability of the conjunction of the currently asserted set of formulae.

6.1. Linear Strategies for STPU

In the following, we discuss two algorithms that are able to synthesize linear strate-
gies for a given STPU problem. They both leverage the convexity in the constraints of
the STPU problem class.
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6.1.1. Vertex Encoding
If the problem is an STPU, then the free constraints represent a convex space: given

any two points in the space of free constraints, any point in the line connecting these
two points is also a solution. Following this idea we can generalize the result of weak
controllability on bounds in [38] to the search of linear strategies. We consider all
the vertexes of the uncontrollable space Γ(~Yu) that, by definition of Γ(~Yu), are the
elements of the set VΓ=̇{lc1,1, uc1,1} × · · · × {lcm,1, ucm,1}.

Theorem 4. Let P =̇(Xc, Xu, Cc, Cf ) be an STPU, ( ~Xc, ~Yu,Γ(~Yu),Ψ( ~Xc, ~Yu)) be its
encoding and let f̄ : R|Yu| → R|Xc| be a linear strategy. If f̄ fulfills Ψ( ~Xc, ~Yu) in all
the vertexes vi ∈ VΓ, then f̄ is a weak linear strategy for P .

Proof. For the sake of contradiction, let us suppose that there exists a point p̄ in the
space of ~Yu such that Γ(p̄) holds and Ψ(f̄(p̄), p̄) does not hold.

Then, there must exist a free constraint ck that is violated by p̄. Since the problem is
an STPU, each free constraint is geometrically either a half-space (for example a− b ∈
[1,∞)) or the intersection of two half-spaces (for example, a − b ∈ [10, 15] is the
intersection of the half-space a − b ≤ 15 with a − b ≥ 10). Therefore, p̄ does not
belong to one of the half-spaces encoded by ck. Let H be the violating half-space.

However, for each vertex vi ∈ VΓ, f̄(vi) must belong to H because the free con-
straints are fulfilled in all the vertexes.

The point f̄(p̄) belongs to the convex hull of the points f̄(vi), but then it must
belong to the half-space H . Hence, we have a contradiction.

Based on this insight, the idea is to create a single formula that encodes the problem
with a symbolic strategy in all the vertexes of the uncontrollable region. The encoding
is obtained instantiating the problem constraint in all the vertexes vi ∈ VΓ and by
enforcing a single hyperplane to contain all of them. If such a hyperplane exists, then
it is a valid linear strategy for the entire problem.

Algorithm 2 shows the pseudo-code for extracting a linear strategy with such en-
coding. We create a matrix A and a vector ~c of real SMT variables representing the
coefficients of the linear strategy. The function VERTEXASSIGNMENTS generates all
the vertexes of the convex polyhedron corresponding to Γ(~Yu). In order to achieve this
result if Γ(~Yu) is generated as in Definition 5, it suffices to generate all the possible
combinations of assignments of contingent constraints bounds. We remark that each
p̄ is a vector of constants, and therefore the only variables occurring in the formula
φ(A,~c) are the coefficients of the linear strategy f(~Yu)=̇A · ~Yu + ~c. The function
SMT.SOLVE checks the satisfiability of the given formula using an SMT solver, while
SMT.GETMODEL returns the produced model in case of SAT answer.

We presented this algorithm for an encoded problem as formalized in Definition 5,
but the same idea can be applied when Γ(~Yu) and Ψ( ~Xc, ~Yu) are simply conjunctive
QF LRA formulae (so that they represent convex polyhedra). The only modification
needed for the algorithm is to change the VERTEXASSIGNMENTS so that it is able to
produce the vertexes of general formulae. For doing this we can employ well known
techniques for enumerating the vertexes of a convex polyhedron [3].

Consider for example the STPU problem in Figure 1. The resulting problem admits
a linear strategy. The encoding obtained by the application of Algorithm 2 is as follows.
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Algorithm 2 Vertex Encoding

1: procedure VERTEXENCODING(Γ(~Yu), Ψ( ~Xc, ~Yu))
2: for all bi ∈ ~Xc do
3: SMT.DECLAREREALVAR(ci)
4: for all yj ∈ ~Yu do
5: SMT.DECLAREREALVAR(Ai,j)
6: φ(A,~c)← >
7: for all p̄ ∈ VERTEXASSIGNMENTS(Γ(~Yu)) do
8: φ(A,~c)← φ(A,~c) ∧Ψ(A · p̄+ ~c, p̄)

9: if SMT.SOLVE(φ(A,~c)) = SAT then
10: (A,~c)← SMT.GETMODEL()
11: return f(~Yu)=̇A · ~Yu + ~c
12: else
13: return ⊥
14: end procedure

((A1,2 · 0 +A2,2 · 1 + c2)− (A1,1 · 0 +A2,1 · 1 + c1) ≥ 0)∧
(((A1,1 · 0 +A2,1 · 1 + c1) + 0)− ((A1,2 · 0 +A2,2 · 1 + c2) + 1) ≤ 1)∧
(((A1,2 · 0 +A2,2 · 1 + c2) + 1)− (A1,1 · 0 +A2,1 · 1 + c1) ≤ 2)

∧
((A1,2 · 0 +A2,2 · 2 + c2)− (A1,1 · 0 +A2,1 · 2 + c1) ≥ 0)∧
(((A1,1 · 0 +A2,1 · 2 + c1) + 0)− ((A1,2 · 0 +A2,2 · 2 + c2) + 2) ≤ 1)∧
(((A1,2 · 0 +A2,2 · 2 + c2) + 2)− (A1,1 · 0 +A2,1 · 2 + c1) ≤ 2)

∧
((A1,2 · 3 +A2,2 · 1 + c2)− (A1,1 · 3 +A2,1 · 1 + c1) ≥ 0)∧
(((A1,1 · 3 +A2,1 · 1 + c1) + 3)− ((A1,2 · 3 +A2,2 · 1 + c2) + 1) ≤ 1)∧
(((A1,2 · 3 +A2,2 · 1 + c2) + 1)− (A1,1 · 3 +A2,1 · 1 + c1) ≤ 2)

∧
((A1,2 · 3 +A2,2 · 2 + c2)− (A1,1 · 3 +A2,1 · 2 + c1) ≥ 0)∧
(((A1,1 · 3 +A2,1 · 2 + c1) + 3)− ((A1,2 · 3 +A2,2 · 2 + c2) + 2) ≤ 1)∧
(((A1,2 · 3 +A2,2 · 2 + c2) + 2)− (A1,1 · 3 +A2,1 · 2 + c1) ≤ 2)

The encoding is satisfiable and a possible model (encoding a linear strategy) is reported
in Equation 9.

A =

(
0 0
0 −1

)
~c =

(
0
2

)
(9)

Therefore, the assignments for the controllable time points b1 and b2 are b1=̇0 and
b2=̇− y2 + 2.
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Algorithm 3 Incremental weakening

1: procedure INCREMENTALWEAKENING(Γ(~Yu), Ψ( ~Xc, ~Yu))
2: repeat
3: O ← GETUSABLEDURATIONS(~Yu)
4: N ← {y ∈ ~Yu | y 6∈ O}
5: η( ~Xc, ~O)← SC ENCODE(Γ|N ( ~N), Ψ|Xc∪N ( ~Xc, ~N))
6: f( ~O)← VERTEXENCODING(Γ|~O( ~O), η( ~Xc, ~O))

7: if f( ~O) 6= ⊥ then
8: return ADDNULLCOLUMNS(f( ~O))
9: until O = Yu

10: return ⊥
11: end procedure

Note that, this approach leads to an exponential blowup in the size of the SMT
problem, caused by the fact that the number of vertexes is 2|Yu|.

6.1.2. Incremental weakening
In order to limit the exponential blowup of the previous encoding to the worst case

only, we developed another approach called “incremental weakening”, that tries to limit
the number of coefficients to search for and to reduce the amount of variables that are
used in the linear strategy. This idea amounts to finding a matrix A in which some
(possibly many) columns are null vectors; in fact, if the i-th column is null in A, the
strategy does not depend on the actual values of yi. In the limit case in which A is
the null matrix, the strategy degenerates to an assignment of constant values to each
controllable time points, and thus to a strong controllability solution.

We start by solving a relaxed problem, in which no uncontrollable duration is ob-
served. This coincides with the definition of a strong controllability problem. If a
solution is found, the strong assignment is a valid weak linear strategy for the problem,
because strong controllability implies weak controllability. Otherwise, a subset of the
uncontrollable durations ~p ⊆ ~Yu is picked and marked as “usable” by the strategy. The
algorithm then tries to build a linear strategy that uses uncontrollable durations in ~p
only. In this way, we are limiting the observations available to our strategy. Using the
previous algorithm, we build the coefficients for the p-th column of the matrix A and
we encode the problem as in the previous algorithm, limiting the exponential explo-
sion only to the durations marked as “usable”. If the algorithm fails to find a linear
strategy for a particular set of “usable” durations, a different subset of the durations is
picked and the approach is iterated, until all the uncontrollable durations are marked as
“usable” and the encoding coincides with the previous approach.

The pseudo-code of this method is reported in Algorithm 3. The function GETUS-
ABLEDURATIONS returns an heuristically computed subset of ~Yu that constitutes the
set of “observed” durations. The function is stateful as it is assumed to return a different
subset at each call. The termination of the algorithm requires that this function eventu-
ally returns the entire ~Yu that exits the repeat loop fulfilling the condition at line 9. In
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this termination condition, the algorithm behaves like the VERTEXENCODING proce-
dure executed on the entire problem. The function SC ENCODE produces the encoding
of a strong controllability problem in SMT (as in [11]). This encoding is used to pre-
vent the observation of non-used durations, leaving the others untouched. The function
VERTEXENCODING is the function described in Algorithm 2. If the VERTEXENCOD-
ING function returns a strategy that works for a subset of the uncontrollable duration
variables, we return the same linear strategy completed by the function ADDNULL-
COLUMNS. The function adds columns of 0s in the positions of the durations that were
not used. This guarantees that the strategy is independent of the actual values of those
durations.

This algorithm tries to abstract the problem by limiting the set of “usable” durations
in a strategy, and refines the abstraction if no linear strategy is found. The process is
iterated until a strategy is found or the entire set of durations is marked as “usable”.

As shown in the previous section, if we consider the running example in Figure 1,
we can derive a strategy in which y1 is never observed. The advantage of INCREMEN-
TALWEAKENING over the previous algorithm is that if we choose to use y2 but not y1

in our strategy we can get to the same result reported in Equation 9 with a smaller and
simpler encoding.

This algorithm depends on the heuristic used for selecting the “usable” durations.
In fact, the number of cycles of the algorithm directly depends on the heuristic.

In our experiments we implemented an heuristic based on a topological sorting of
the uncontrollable time points. The heuristic first generates all the singleton subsets
and, if the algorithm is not terminated, considers prefixes of the topological order of
increasing size until all the durations are marked as “usable” and the algorithm termi-
nates.

6.2. Piecewise-linear Strategies for STPU
In the following, we present two algorithms for extracting a piecewise-linear strat-

egy for a given weakly controllable STPU.

6.2.1. Simplexes decomposition
A direct approach to extract a piecewise-linear strategy consists in partitioning the

region of the uncontrollable durations in a set of m-simplexes (hyper-tetrahedra in m
dimensions) withm = |Yu|. In geometry, a k-simplex is the generalization of a triangle
to k-dimensions. A k-simplex is a k-dimensional polytope which is the convex hull of
k + 1 linearly independent (i.e. not aligned) vertexes. For example, a 2-simplex is a
triangle and a 3-simplex is a tetrahedron. We consider these polyhedra because they
can be used to triangulate more complex regions [20]. The following theorem states
the existence of a linear strategy in any simplex contained in the uncontrollable space.

Theorem 5. Let P =̇( ~Xc, ~Yu,Γ(~Yu),Ψ( ~Xc, ~Yu)) be an encoded weakly controllable
STPU. For each |Yu|-simplex σ( ~Yu) such that σ( ~Yu) ⊆ Γ(~Y ) there exists a valid weak
linear strategy f such that ∀~Yu.((σ(~Yu) ∧ ~Xc = f(~Yu))→ Ψ( ~Xc, ~Yu)) is valid.

Proof. Let m=̇| ~Yu| and V be the set of m + 1 vertexes of σ( ~Yu). By definition of
simplex, σ( ~Yu) is the convex hull of the points in V . P is weakly controllable by
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assumption, therefore for each vi ∈ V , there exists a point ti that extends vi in the
space of ~Xc ∪ ~Yu such that ti ∈ Ψ( ~Xc, ~Yu). Let T be {ti|vi ∈ V }.

Let f be a linear strategy A · ~Yu + ~c, such that for each controllable time point
bi ∈ Xc, bi = Ai,1y1 + · · · + Ai,mym + ci is the hyperplane passing through all the
points ti ∈ T . Such a hyperplane exists and is unique because it is the m-hyperplane
containing the m+ 1 not-collinear [14] points ti ∈ T (points in T are not collinear as
they are the results of an extension of the points in V that are not collinear because are
the m+ 1 vertexes of a simplex).

We now prove that f is a strategy such that ∀~Yu.(σ(~Yu) ∧ ~Xc = f(~Yu)) →
Ψ( ~Xc, ~Yu) is valid by showing that the hyperplane bi = Ai,1y1 + · · · + Ai,mym + ci
is contained in Ψ( ~Xc, ~Yu) for each ~Yu |= σ( ~Yu). Since the hyperplane contains all
the ti ∈ T , for each point k in the convex hull of V , the hyperplane computed in k is
contained in Ψ( ~Xc, ~Yu) because of the convexity of Ψ( ~Xc, ~Yu). This proves the thesis
because σ( ~Yu) is the convex hull of the points in V .

In order to exploit Theorem 5 we need to be able to split the uncontrollable space
into simplexes. Doing so would allow us to split the problem of finding a piecewise-
linear strategy for the whole problem in the problem of finding linear strategies for
each simplex and then combine them.

The uncontrollable region Γ(~Yu) is a hyper-rectangle, and the minimum number of
simplexes needed to cover an hyper-rectangle is an open mathematical problem [20].
However, it is known that any hyper-rectangle in m dimensions can be split in a facto-
rial number of simplexes (m!). For example, a rectangle can be split in 2 triangles, and
a rectangular cuboid can be covered by 6 tetrahedrons.

Given Γ(~Yu), we can obtain all the simplexes using the following idea. Suppose
that the bounds for all the uncontrollable variables are [0, 1]. Then, let R be the region
satisfying the sequence of inequalities yp1 ≤ yp2 ≤ · · · ≤ ypm where (p1, . . . , pm) is
a permutation of (1, . . . ,m) and m is the number of uncontrollable duration variables.
It can be shown that R is a simplex and that the simplexes generated for all the permu-
tations form a partition of the uncontrollable space [20]. In the general case, when we
can have arbitrary bounds, we apply the very same idea, permuting the variables and
considering the inequalities arising from considering the concrete lower/upper bounds.

Using this approach, we have to enumerate all the permutations of the uncontrol-
lable variables. Thus, the number of considered simplexes is factorial in the number of
uncontrollable variables (i.e. |Yu|!).

For each simplex it is possible to find a linear strategy separately by enforcing a
hyperplane to satisfy the problem constraints in all the simplex vertexes. In Figure 8
we depicted an example of this idea for the running example problem.

Algorithm 4 shows the pseudo-code for extracting a piecewise linear strategy by
enumerating all the simplexes and finding a linear strategy for every simplex. The
computational complexity of this algorithm is factorial due to the enumeration of all
the (|Yu|!) simplexes.

In the pseudo-code, the function GETMAXIMALSIMPLEXES enumerates a sequence
of |Yu|-simplexes needed to cover the Γ(~Yu) polyhedron, while VERTEXENCODING
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Figure 8: Plot of the running example problem (with b1 assigned to 0) with a partition of the space of
uncontrollable durations. The space of uncontrollable durations is split in two triangles, depicted in yellow
and orange. In (a) we plot the space of the solutions, while in (b) we draw in red a possible piecewise-linear
strategy obtained by using a linear strategy for each triangle.

Algorithm 4 Simplexes Decomposition strategy extraction algorithm

1: procedure SIMPLEXESDECOMPOSITION(Γ(~Yu), Ψ( ~Xu, ~Yu))
2: f ← GETEMPTYSTRATEGY()
3: for all σ(~Yu) ∈ GETMAXIMALSIMPLEXES(Γ(~Yu)) do
4: fsub ← VERTEXENCODING(σ(~Yu), Ψ( ~Xu, ~Yu))
5: f ← ADDPIECETOSTRATEGY(f , (σ(~Yu), fsub))
6: return f
7: end procedure

returns a linear strategy suitable for the given simplex5. We obtain the resulting piecewise-
linear strategy f by adding a piece for each simplex by means of the function AD-
DPIECETOSTRATEGY.

Consider the problem in Figure 6; the algorithm works as follows. We first consider
the simplex with vertexes {(0, 1), (0, 2), (3, 1)} in the space of y1 and y2. A possible
linear strategy in this simplex is f1 = A1 · ~Yu + ~c1 as follows.

A1 =

(
0 0
1
3 0

)
~c1 =

(
0
0

)
We then consider the second maximal simplex with vertexes {(0, 2), (3, 1), (3, 2)}. A

5( ~Xc, ~Yu, σ(~Yu),Ψ( ~Xu, ~Yu)) is not a well formed encoding of an STPU, because σ(~Yu) is not in the
shape prescribed by Definition 5. Nevertheless, the VERTEXENCODING algorithm can deal with any convex
uncontrollable region.
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possible linear strategy in this simplex is f2 = A2 · ~Yu + ~c2 as follows.

A2 =

(
0 0
0 −1

)
~c2 =

(
0
2

)
The algorithm combines such strategies in a valid piecewise-linear weak strategy f as
follows. (

b1
b2

)
= f(y1, y2)=̇

{
f1 if (y2 ≤ − 1

3y1 + 2)

f2 otherwise

6.2.2. Lazy Expansion
To overcome the complexity limitation of the previous approach we developed a

second technique, called Lazy Expansion, that first selects a simplex in the uncon-
trollable region and finds a linear strategy in that simplex. Second, we symbolically
compute the region of the uncontrollable durations that is satisfied by the computed
strategy. In this way, we perform a “widening” of the portion of the uncontrollable
space that can be satisfied using the computed linear strategy. This widened region
is guaranteed to cover at least the simplex, but it might be larger. We then associate
the computed strategy to the resulting region. Finally, we search a new simplex in
the remaining part of the space of uncontrollable durations. The algorithm terminates
when the space of uncontrollable durations is completely covered. The idea behind the
approach is to generalize the strategy found for a particular simplex to cover a wider
potion of the space of the uncontrollable durations. The algorithm lazily picks a sim-
plex from the region of the uncontrollable durations to be covered and gets a strategy
that is able to cover that particular simplex. We then generalize the applicability of the
returned strategy and proceed until we completely cover the uncontrollable space. The
main advantage of this algorithm with respect to the previous one is that it is not forced
to enumerate all the possible simplexes, because the computed strategy once found is
exploited in all the possible points of the space where it is applicable.

Algorithm 5 shows the pseudo-code for extracting a piecewise linear strategy ex-
ploiting lazy expansion. The function GETUNCOVEREDSIMPLEX returns any simplex
σ(~Yu) completely contained in the uncontrollable region Γ(~Yu). At each step we com-
pute the widening of the simplex o(~Yu), that is the region in which the computed linear
strategy fsub is applicable. In order to symbolically obtain this region, we substitute the
LRA encoding of the strategy fsub in the free constraints Ψ( ~Xc, ~Yu). In this way, each
controllable time point variable bi in ~Xc is replaced by the linear term that computes it
according to fsub, and we are left with a formula defined over ~Yu. Each model of such
formula, is a point in the uncontrollable region for which the application of fsub fulfills
the free constraints of the problem. We use this procedure to create “bigger” pieces and
reduce the number of iterations of the algorithm.

In general, this algorithm is not guaranteed to terminate. In fact, termination can
be assured with the following two requirements. First, each region σ(~Yu) covers a
non-empty volume of the space of the uncontrollable durations. This is needed for
progression: the piece of strategy computed at each step is guaranteed to cover at
least the simplex that originated it (at each step σ(~Yu) |=LRA o(~Yu)). The second
requirement is to have progression, that is we disallow infinite decomposition chains
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Algorithm 5 Lazy piecewise-linear strategy extraction

1: procedure LAZYEXPANSION(Γ(~Yu), Ψ( ~Xc, ~Yu))
2: f ←GETEMPTYSTRATEGY()
3: η(~Yu)← Γ(~Yu)

4: for all yj ∈ ~Yu do
5: SMT.DECLAREVAR(yi, R)
6: while SMT.SOLVE(η(~Yu)) do
7: σ(~Yu)← GETUNCOVEREDSIMPLEX(η(~Yu))
8: fsub ← VERTEXENCODING(σ(~Yu), Ψ( ~Xc, ~Yu))
9: o(~Yu)← Ψ(fsub(~Yu), ~Yu)

10: f ← ADDPIECETOSTRATEGY(f , (η(~Yu) ∧ o(~Yu), fsub))
11: η(~Yu)← η(~Yu) ∧ ¬o(~Yu)

12: return f
13: end procedure

for finite regions. If we avoid empty regions and infinite subdivisions of finite regions,
we will eventually get to the empty region, and thus to unsatisfiability and termination.

In our implementation, we do not guarantee termination. However, the algorithm
correctly terminated in all our experiments and in many cases it performed much faster
than the SIMPLEXESDECOMPOSITION algorithm. One possibility to guarantee the ter-
mination would be to hybridize this algorithm with the SIMPLEXESDECOMPOSITION
approach by bounding the number of loops of the LAZYEXPANSION procedure or to
take a portfolio approach.

One key issue for the efficiency of this approach resides in finding good simplexes
to cover a (possibly non-convex) region η(~Yu). Defining what a “good” simplex is for
the algorithm performance is a non-trivial task because the aim is to terminate with
a minimum number of iterations, and thus to obtain a decomposition of Γ(~Yu) in a
minimal set of oi(~Yu) regions.

6.3. Linear Strategies for DTPU

We now consider the DTPU problem class and we provide algorithms for strategy
synthesis starting from the linear case.

A way of computing the elements of matrix A and vector ~c for a linear strategy is
an encoding of the constraints in the theory of Nonlinear Real Arithmetic over Polyno-
mials (NRA). In fact, we can compactly express the properties of each entry of A and
~c by imposing constraints on polynomials. Equation 10 is an encoding into NRA for
extracting a linear strategy for any TPU problem in a single check.

∃A1,1, . . . , A1,m, c1,

. . .

An,1, . . . , An,m, cn.∀~Yu.
(

Γ(~Yu)→ Ψ[A · ~Yu + ~c/ ~Xc](~Yu)
) (10)
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The idea is to let the solver search for the Ai,j and ci coefficients of the linear combi-
nation of ~Yu that represent the set of hyper-planes that are strategies for each bi ∈ ~Xc.
If the solver reports unsatisfiable, it means that no linear strategy exists for the given
problem. This approach directly follows from the definition of linear strategy and is
applicable to the entire spectrum of temporal problems with uncertainty because no
assumption on the convexity of the search space is made.

As an example we show the encoding of Equation 10 applied to the TPU in Fig-
ure 6, to remark the fact that no linear strategy exists for this problem.

∃A1,1, A1,2, A2,1, A2,2, c1, c2.∀y1, y2.

((y1 ≥ 0) ∧ (y1 ≤ 3) ∧ (y2 ≥ 1) ∧ (y2 ≤ 2))→
(((A2,1y1 +A2,2y2 + c2)− (A1,1y1 +A1,2y2 + c1) ≥ 0)∧
(((A1,1y1 +A1,2y2 + c1) + y1)− (A2,1y1 +A2,2y2 + c2) ≥ 0)∧
(((A1,1y1 +A1,2y2 + c1) + y1)− ((A2,1y1 +A2,2y2 + c2) + y2) ≤ 1)∧
(((A2,1y1 +A2,2y2 + c2) + y2)− (A1,1y1 +A1,2y2 + c1) ≤ 2))

The running example problem is an STPU, but the approach presented here is more
general. In fact, given a procedure that is able to decideNRA formulae with arbitrary
disjunctions we can deal with DTPU as well. For example, the Cylindrical Algebraic
Decomposition (CAD) procedure [12] can deal with this kind of formulae.

6.4. Piecewise-linear Strategies for DTPU
In this section we analyze the synthesis of a piecewise-linear strategy for a DTPU.

When dealing with a DTPU, the convexity assumptions holding for the STPU case
are not valid anymore. We present two algorithms for the strategy synthesis in the
DTPU problem class. The “skin crawler” method searches a strategy by considering
the faces of the DTPU solution space considered as a polyhedron. The “convex region
enumerator” approach, instead, decomposes the DTPU in a number of convex regions
and applies the techniques for the STPU problem class on each of them.

6.4.1. Skin crawler
An intuition that can be exploited to synthesize a weak strategy for the DTPU

problem class is obtained from the proof of Theorem 3. The idea is to iterate on the
faces of Ψ( ~Xc, ~Yu) and to project each of them in the space of ~Yu until the entire
Γ(~Yu) region is covered by the projections. Such an iteration can be done efficiently
by exploiting the optimization features of many modern SMT solvers.

The top-level procedure, shown in Algorithm 6, iterates over the faces and extracts
a linear strategy for each face, accumulating this result in a piecewise-linear strategy.

The face extraction procedure (Algorithm 7) starts by extracting all the equalities
from the free constraints. Since the free constraints are made of non-strict inequalities,
we aim at extracting the skin of the free constraints by considering the equality a −
b = k derived from a − b <= k. The algorithm uses an optimization procedure that
maximizes the number of equalities satisfied at each step represented by the variable
satEqualities. In this way, considering the conjunction of all the satisfied equalities,
we first explore the vertexes, then the edges and finally the faces. The conjunction of
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Algorithm 6 Skin-based strategy extraction for DTPU

1: procedure SKINCRAWLER(Γ( ~Yu), Ψ( ~Xc, ~Yu))
2: f ← GETEMPTYSTRATEGY()
3: for all (o( ~Yu), fsub) ∈ GETFACESTRATEGIES(Γ( ~Yu), Ψ( ~Xc, ~Yu)) do
4: f ←ADDPIECETOSTRATEGY(f , (o( ~Yu), fsub))
5: return f
6: end procedure

equalities is actually a system of linear equalities representing a face. In order to extract
a strategy from a face, we transform a conjunction of linear equalities into matrix form.
As an optimization we discard systems that have dimension lower than the number
of uncontrollable durations. This prevents the creation of pieces representing regions
having null volume.

The algorithm termination depends only on the termination of the GETFACES-
TRATEGIES procedure. The procedure is guaranteed to terminate because at each step
we add a new clause to χ( ~Xc, ~Yu) that forces at least one equality that was positive in
the found model to be false. Therefore we can have at most an exponential number of
cycles with respect to the number of equalities in Equalities(Ψ( ~Xc, ~Yu)).

6.4.2. Convex region enumerator
We can exploit the possibility of generating a strategy for the convex case by enu-

merating the convex regions in the space of free constraints.
This idea requires the possibility to deal with a possibly non-convex Γ(~Yu) because

the projection of a convex polyhedron space intersected with the non-convex Γ(~Yu) can
generate non-convex (and non-rectangular) regions. The LAZYEXPANSION algorithm
is able to deal with such constraints, because no constraint is imposed on the shape of
Γ(~Yu) during the algorithm execution.

In this case, we need to enumerate a set of convex formulae {µi( ~Xc, ~Yu)|i ∈ [1, I]}
such that

∨I
i=1 µi ⇔ Ψ( ~Xc, ~Yu). Such formulae can be obtained by computing the

Disjunctive Normal Form (DNF) of the formula Ψ( ~Xc, ~Yu). From the practical point
of view, each disjunct is either an atom of the original formula or its negation. The DNF
can be efficiently computed in the SMT framework using an incremental mechanism.

Algorithm 8 shows the pseudo-code for the Convex Region Enumerator algorithm
for the weak strategy synthesis of DTPU problems.

The algorithm works as follows. First it selects any consistent temporal evolution
by solving the SMT problem of the conjunction of the contingent and free constraints.
Given the consistent model, the algorithm extracts the free constraints atoms that are
satisfied and the atoms that are not fulfilled. The region obtained by conjoining all those
atoms is a convex (non-necessarily closed) polyhedron. We compute the projection of
such a polyhedron in the region of the uncontrollable durations and we compute a
strategy for this quasi-STPU problem6. The obtained strategy is applied in the covered

6The problem is not a proper STPU because the projection can be non-rectangular and the constraints
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Algorithm 7 Generates all the faces of Ψ( ~Xc, ~Yu) and converts them in a linear system
of equations

1: procedure GETFACESTRATEGIES(Γ( ~Yu), Ψ( ~Xc, ~Yu))
2: for all xi ∈ ~Xc ∪ ~Yu do
3: SMT.DECLAREVAR(xi, R)
4: χ( ~Xc, ~Yu)← Ψ( ~Xc, ~Yu) ∧ Γ( ~Yu)
5: satEqualities← 0
6: for all eqi( ~Xc, ~Yu) ∈ Equalities(Ψ( ~Xc, ~Yu)) do
7: SMT.DECLAREVAR(eqvi, R)
8: χ( ~Xc, ~Yu)← χ( ~Xc, ~Yu) ∧ (eqi( ~Xc, ~Yu)→ (eqvi = 1))

9: χ( ~Xc, ~Yu)← χ( ~Xc, ~Yu) ∧ (eqi( ~Xc, ~Yu) ∨ (eqvi = 0))
10: satEqualities← satEqualities+ eqvi
11: faces← ∅
12: while SMT.SOLVEMAXIMIZING(χ( ~Xc, ~Yu), satEqualities) = SAT do
13: system← {eqi( ~Xc, ~Yu) ∈ Equalities(Ψ( ~Xc, ~Yu))|µ |= eqi( ~Xc, ~Yu)}
14: (M~t = ~d)← CONVERTTOLINEARSYSTEM(system)
15: bases← GETBASES(M~t = 0)
16: if |bases| ≥ |~Yu| then
17: (A,~c)← TOLINEARSTRATEGY(M )
18: o(~Y )← Ψ(A · ~Yu + ~c, ~Yu)

19: faces← faces ∪ {(o(~Y ), A · ~Yu + ~c)}
20: χ( ~Xc, ~Yu)← χ( ~Xc, ~Yu) ∧ (

∨
eqi( ~Xc, ~Yu)∈system ¬eqi( ~Xc, ~Yu))

21: return faces
22: end procedure

region that is removed from the problem together with the polyhedron. This ensures
the algorithm termination, because at each step we remove a model of the Boolean
abstraction from the ρ( ~Xc, ~Yu) formula.

In the pseudo-code, the function PROJECT performs a quantifier elimination in or-
der to compute the projection of a given polyhedron onto the given space and is used
to compute the uncontrollable region that is covered by the selected polyhedron.

Termination is not guaranteed, because we internally use the LAZYEXPANSION
algorithm that is incomplete; however, also in this case, the algorithm terminated in all
the benchmarks.

7. Experimental Evaluation

In order to empirically test the effectiveness of the proposed approaches, we im-
plemented a tool for deciding weak controllability and synthesizing weak strategies

can contain strict inequalities. However the LAZYEXPANSION algorithm is able to deal even with such
degenerated problems.
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Algorithm 8 Convex Region Enumeration strategy extraction for DTPU

1: procedure CONVEXREGIONENUMERATOR(Γ( ~Yu), Ψ( ~Xc, ~Yu))
2: for all xi ∈ ~Xc ∪ ~Yu do
3: SMT.DECLAREVAR(xi, R)
4: f ← GETEMPTYSTRATEGY()
5: ρ( ~Xc, ~Yu)← Ψ( ~Xc, ~Yu) ∧ Γ( ~Yu)

6: while SMT.SOLVE(ρ( ~Xc, ~Yu)) = SAT do
7: µ← SMT.GETMODEL()
8: δ( ~Xc, ~Yu)← >
9: for all α( ~Xc, ~Yu) ∈ Atoms(Ψ( ~Xc

~Yu)) do
10: if µ |= α( ~Xc, ~Yu) then
11: δ( ~Xc, ~Yu)← δ( ~Xc, ~Yu) ∧ α( ~Xc, ~Yu)
12: else
13: δ( ~Xc, ~Yu)← δ( ~Xc, ~Yu) ∧ ¬(α( ~Xc, ~Yu))

14: o( ~Yu)← PROJECT(δ( ~Xc, ~Yu), ~Yu)
15: fsub ← LAZYEXPANSION(o( ~Yu), δ( ~Xc, ~Yu))
16: f ← ADDPIECETOSTRATEGY(f , (o( ~Yu), fsub))
17: ρ( ~Xc, ~Yu)← ρ( ~Xc, ~Yu) ∧ ¬δ( ~Xc, ~Yu) ∧ ¬o( ~Yu)

18: return f
19: end procedure

for a TPU. Our tool is implemented in Python. It reads a TPU problem, and applies
to it the portfolio of encodings and algorithms we presented in this paper. The tool
can synthesize explicit strategies as C++ functions (taking in input a situation), that
can be compiled and linked in any program. We used the Z3 [17] SMT solver for
the weak controllability decision problem; we rely on the Python API provided by the
MATHSAT5 [7] SMT solver for all the strategy-synthesis techniques.

We tested the tool on a set of benchmarks described in detail below. We remark
that, as far as our knowledge is concerned, there are no competitor tools or solvers
able to deal with the weak controllability decision problem, nor with the synthesis
of a weak strategy. Thus, in the experimental evaluation, we do not compare with
any other tool or approach. All the experiments have been performed on a Scientific-
Linux server equipped with two quad-core Xeon processors @ 2.70GHz. We used a
memory limit of 2GB, a time-out of 300 seconds and we used sequential, single-core
computation only. The tool, together with all the benchmarks and the results of the
evaluation, can be downloaded from https://es.fbk.eu/people/roveri/
tests/aij-weakcontr.

The randomly-generated benchmarks were obtained by modifying the generator of
temporal problems presented in [2] by introducing uncertainty in the problem: each
constraint introduced by the consistency problem generator is turned into a contingent
constraint with a given probability, and its destination node is considered as uncon-
trollable. We used random instance generators because they are typically used in the
literature (e.g. [2]), and because they can be easily scaled to stress the solvers.
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We tested the decision problem encoding over a set of 2442 randomly generated
DTPU, TCSPU and STPU instances, with a number of time points ranging from 6 to
20000. For the evaluation of the strategy-extraction techniques, we used 1354 weakly
controllable STPU benchmarks and 2112 weakly controllable DTPU instances ranging
from 4 to 50 time points.
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Figure 9: Results for the decision problem encodings solved using the Z3 SMT solver. (a) reports the
cumulative time (in logarithmic scale) cactus plot; (b) and (c) show the scatter plots of INVERTED vs.
ASSUMPTION-EXTRACTION encodings divided in weakly controllable (b), and not weakly controllable
(c). The TO line denotes the instances that reached the time out, while MO indicates instances that hit the
memory limit.
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7.1. Decision problem
The results of checking the decision problem over the set of TPUs are plotted in

Figure 9. The cactus plot (a) reports, in the horizontal axis, the number of solved in-
stances and, on the vertical axis, the cumulative time, in logarithmic scale, taken by
the SMT solver for each encoding. For example, the ASSUMPTION-EXTRACTION en-
coding takes about 10000 seconds to solve the easiest 750 instances. We compared the
formulation of Proposition 1 called DIRECT with the INVERTED and ASSUMPTION-
EXTRACTION encodings.

The figure highlights the fact that Z3 performs much better when the ASSUMPTION-
EXTRACTION encoding of the problem is considered: in fact, this approach is able to
solve, in less time, a higher number of instances with respect to the INVERTED and DI-
RECT encodings. The DIRECT encoding performs almost identically to the INVERTED
one. This behavior is due to the fact that the INVERTED encoding has the same shape
as the DIRECT one. The only difference is the negation of the DIRECT encoding, that
does not affect the solver performance.

In Figures 9 (b) and 9 (c) we reported the scatter plots comparing the perfor-
mances of the ASSUMPTION-EXTRACTION with the INVERTED encodings, distin-
guishing between weakly controllable and non weakly controllable instances. We
note that, in the weakly controllable case, the ASSUMPTION-EXTRACTION encod-
ing outperforms the INVERTED encoding in most of the benchmarks. For non weakly
controllable instances, the two encodings perform similarly in terms of speed. How-
ever, the INVERTED encoding is able to solve 86 instances that are unsolvable by the
ASSUMPTION-EXTRACTION encoding due to the imposed memory limit.

7.2. STPU strategy synthesis
The results for the evaluation of the strategy-extraction techniques for the 1354

STPU benchmarks are reported in Figure 10 (a). The plot considers only those bench-
marks that admit a linear strategy, and compares the four different approaches. The plot
clearly shows that for linear strategies, the INCREMENTALWEAKENING approach out-
performs all the others. The SIMPLEXESDECOMPOSITION method quickly explodes
due to the factorial complexity of simplexes enumeration. Although the techniques for
piecewise-linear strategy extraction are penalized as they are strictly more general than
the others, the plot shows that LAZYEXPANSION approach is much faster than the SIM-
PLEXESDECOMPOSITION. In Figure 10 (b) we plotted the number of “pieces” of the
strategies for the LAZYEXPANSION and SIMPLEXESDECOMPOSITION methods. The
plot clearly shows that, although for small problems the LAZYEXPANSION approach
generates additional, unneeded “pieces”, when the problem size increases the number
of “pieces” identified by the LAZYEXPANSION method is much smaller than for the
SIMPLEXESDECOMPOSITION one. In general, the LAZYEXPANSION approach has a
huge gain in performances and in strategy size.

7.3. DTPU strategy synthesis
In Figure 11 we report the results on the DTPU problem class. The plots clearly

show that the CONVEXREGIONENUMERATOR algorithm performs better than the SKIN-
CRAWLER one. This is because of two main reasons. First, the SKINCRAWLER ap-
proach solves a costly minimization problem and has to traverse all the faces of the
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Figure 10: Results for STPU linear strategy extraction problem. In (a) we plotted the cumulative cactus plot
of the strategy extraction time for the different algorithms proposed in this paper, while in (b) we compared
the number of pieces for piecewise-linear algorithms expressed as the number of split regions.

space of free constraints while the CONVEXREGIONENUMERATOR algorithm applies
the cheap LAZYEXPANSION approach to each convex region that is generated by a
single call to the SMT solver. Second, the linear strategy generated by the LAZY-
EXPANSION approach is generalized and applied wherever possible, therefore if the
problem allows for a linear strategy the CONVEXREGIONENUMERATOR algorithm is
able to quickly synthesize it, while the SKINCRAWLER has to enumerate enough faces
to cover the entire uncontrollable space.

There is an interesting peak on the rightmost part of the CONVEXREGIONENU-
MERATOR curve in the plot. This is due to a particular instance that is solved in 287.28
seconds generating a strategy with 3750 pieces (thus using the same number of itera-
tions to terminate). This is one example in which the splitting done by the LAZYEX-
PANSION approach gets lost in splitting the uncontrollable space in simplexes.

Finally, we did not experimented the effectiveness of the NRA encoding for two
reasons. First, since a linear strategy is not guaranteed to exist for STPUs, it is also not
guaranteed to exist in DTPUs. Second, the NRA approach needs a solver supporting
the quantification over the real polynomial arithmetic (the full polynomial NRA the-
ory), and to the best of our knowledge, no SMT solver fully supports this theory due to
its complexity, even if the problem is decidable [12].

7.4. Strategy execution

In this paper we proposed a number of approaches to synthesize weak strategies
arguing that their execution is practically more efficient than solving the individual
problems without uncertainty obtained by projecting the uncertainty away. In this sec-
tion we provide experimental evidence supporting this claim on a number of STPU and
DTPU instances.
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Figure 11: Results for strategy extraction problem in the DTPU problem class. In (a) we plotted the cu-
mulative cactus plot of the solving time for the CONVEXREGIONENUMERATOR and the SKINCRAWLER
algorithms while (b) is a scatter plot of the data.

We conducted the experiment as follows. For each TPU, we randomly gener-
ated 1000 situations, represented as complete assignments for the uncontrollable dura-
tions. We implemented the IMPLICIT-SMT and IMPLICIT-SMT-INCREMENTAL gen-
eral strategies described in section 5.1 using the MATHSAT5 SMT solver. Other TP
solvers can, in principle, be employed to create implicit strategies, but SMT solvers
showed to be effective in dealing with consistency problems [11]. For this reason, and
for the lack of publicly available implemented solvers, we limited our experimentation
to the SMT based techniques described in section 5.1.

In addition, we considered three ways to compile in machine code the problem-
specific strategies generated by the algorithms presented in this paper. We translated
the linear or piecewise-linear strategy synthesized by any of our algorithms into a C++
code. The translation for linear strategies is straight-forward: we create a function that
takes in input a numeric value for each uncontrollable duration and we compute the
output of the strategy by solving the matrix multiplication as described in section 5.2.
Given a piecewise-linear strategy, we translate it using a sequence of if statements,
one for each piece. The condition of each if is the transposition in C++ syntax of the
piece condition. Each conditional statement returns the value computed by the trans-
lation of the linear strategy relative to the particular piece. We used three different
datatypes to represent numeric values and perform the arithmetic operations. In par-
ticular, we used the (finite-precision) C++ float and double and the GNU-GMP
library for arbitrary precision arithmetic7. The float and double datatypes are a
finite-precision representation of rational numbers. As such, they suffer from both nu-

7The GNU Multiple Precision Arithmetic Library https://gmplib.org/.
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Figure 12: Results for strategy execution: for each problem, the generated strategy is executed on 1000
randomly generated situations. the plot considers all the STPU and DTPU randomly generated problems.
The cactus plot shows the number of solved instances on the x axis and the accumulated time to solve them
in the y axis.

meric stability and rounding problems that may, in principle, cause unsoundness in the
strategy output. On the other hand, GNU-GMP is the same library employed by the
MATHSAT5 SMT solver and does not suffer from any kind of numeric stability or
rounding problems.

Figure 12 shows the results of the comparison: in our experiments the ex-
plicit strategies outperform projection-based implicit strategies. IMPLICIT-SMT-
INCREMENTAL performs better than IMPLICIT-SMT, thanks to the incrementality fea-
ture of the SMT solver, but the explicit strategies bring a significant speedup on all the
instances. Arbitrary-precision arithmetic (that fairly compares with the SMT precision)
outperforms projection-based techniques by two orders of magnitude. The compiled
strategies with native C++ datatypes perform even better, but the numerical stability
problems can, in principle, lead to unsound results. We checked the output of each
technique on each situation in order to assess the soundness, but all the results were
correct. Nevertheless, studying under which condition we can guarantee that such
finite-precision implementations are correct is subject of future work. We highlight
that the compilations using native C++ datatypes can be translated to Boolean circuits,
and open for the possibility to create very efficient hardware implementations of these
strategies.

8. Related Work

The literature in temporal problems is vast. Starting from the seminal paper of
Dechter [18] describing STP and TCSP, many authors worked in the field of temporal
reasoning without uncertainty [2, 36]. Armando et al. [2] were the first proposing the
use of SMT in the field of temporal problems tackling the DTP problem class. This
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work focuses on temporal problems without uncertainty, and is thus limited to checking
the consistency of a given TP.

Fargier and Vidal introduced the concept of STPU and described the three control-
lability levels [38]. This work has been extended for TCSPU and DTPU in [32, 37].

Concerning strong controllability, this work already contained a polynomial algo-
rithm for schedule synthesis of STPU. For TCSPU and DTPU, the strong controlla-
bility problem has been studied, from a theoretical point of view, by Peintner et al.
in [32]; a number of techniques that leverage SMT solvers to obtain a practical solver
are presented in our previous work [11].

For the decision problem of weak controllability, in [38] a basic algorithm for the
STPU class is presented. In [37], Venable et al. approached the problem of deciding
weak controllability of DTPU using an explicit algorithm that enumerates the STPU
components of a DTPU. In this work we also tackle the DTPU class, but we exploit
symbolic techniques to avoid this explicit enumeration, delegating it to the SMT solver,
that can exploit advanced mitigation techniques, such as variable selection heuristics
and conflict learning. In addition, both [38] and [37] take a purely theoretical point
of view of the problem, while here we formalize and encode the weak controllability
decision problem in the SMT framework to obtain practical experimental results.

The only work in the literature for the strategy extraction problem for weak con-
trollability is our previous work [10]. In [10] we presented the algorithms for linear
and piecewise-linear strategy extraction for the STPU problem class. In this paper, we
cover the more general DTPU problem class, considering the strategy synthesis prob-
lem in presence of disjunctions. We provide a more detailed theory discussion, we add
the proof of existence of piecewise linear strategies for any weakly controllable TPU,
and proofs and explanations that were not included in [10]. Also, the experimental
evaluation has been extended and clarified.

There exists another form of controllability for TPUs, namely dynamic controlla-
bility. The key difference is that in the case of dynamic controllability the strategy is
not allowed to observe the entire situation, but each decision can only depend on past
events. The problem of dynamic controllability for STPU is a widely studied prob-
lem [29, 28, 27, 21, 22], in fact many algorithms have been devised for deciding the
dynamic controllability of a STPU. For the disjunctive problem classes, in [37], Ven-
able et. al. present an algorithm for deciding dynamic controllability for TCSPU, while
in [8] we, Hunsberger and Poseanto present a decision procedure for DTPUs based on a
reduction of the dynamic controllability problem to the reachability problem in a Timed
Game Automaton. Also in the field of dynamic controllability, strategy synthesis is a
relevant topic: many authors presented implicit strategies for the runtime scheduling of
time points [27, 22] for STPU. Those strategies require on-line reasoning and are based
on generating networks that can be dispatched by a runtime algorithm using constraint
propagation techniques. Recently, we started a research line aiming at synthesizing
explicit strategies for dynamic controllability in the STPU problem class [9] and in
the DTPU problem class [8]. In these works, we present encodings of the dynamic
controllability problem into reachability games in Timed Gamed Automata for which
constructive solution techniques exist. The strategies generated can be converted in
implicit strategies for the TPU that are similar to the one we synthesize in this paper,
for weak controllability.
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9. Conclusions and Future Work

In this paper we presented the first comprehensive approach to the problem of weak
controllability for TPUs. We cover the problem in its full generality, in the case of
TPUs with disjunctions. We work in a logic-based framework, that relies on SMT
techniques to achieve an efficient implementation. We make the following contribu-
tions: we provide the first effective procedure for deciding the weak controllability of
DTPU; we investigate the problem of repeated execution; we propose various construc-
tive forms of strategy extraction. The experimental evaluation shows the feasibility of
the method, and demonstrates dramatic speed ups on explicit over implicit strategy
execution.

In the future, we will investigate the following research lines. The “incremental
weakening” approach for linear strategy extraction and the “lazy decomposition” ap-
proach for piecewise-linear strategy extraction are strongly influenced by the selection
heuristics. We will investigate the possibility of using topological information for the
generation of effective subsets of ~y in “incremental weakening”, and the use of extremal
simplexes in the “lazy decomposition” approach. We plan to study the applicability to
the strategy construction problem of SMT proof-extraction techniques: the capability
of modern solvers to extract proofs of unsatisfiability could provide a way to extract the
strategy while proving weak controllability. In addition, determining under which con-
ditions a finite state representation is guaranteed to be applicable, can open the way to
more efficient and even hardware-implemented strategies. Finally, we believe that the
techniques we described can pave the way to efficient explicit strategies for dynamic
controllability, where strategies are required to rely only on the observation of events
that have already occurred. In particular, we plan to combine the approaches to strong
and weak controllability, to explore the continuum in between.
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[25] Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elimination.
Computer Journal, 36(5):450–462, 1993.

[26] David Monniaux. A quantifier elimination algorithm for linear real arithmetic. In
LPAR, pages 243–257, 2008.

[27] Paul Morris. A structural characterization of temporal dynamic controllability. In
CP, pages 375–389, 2006.

[28] Paul Morris and Nicola Muscettola. Temporal dynamic controllability revisited.
In AAAI, pages 1193–1198, 2005.

[29] Paul Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans
with temporal uncertainty. In IJCAI, pages 494–502, 2001.

[30] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In DAC, pages 530–
535, 2001.

[31] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems, 1(2):245–
257, 1979.

[32] Bart Peintner, Kristen B. Venable, and Neil Yorke-Smith. Strong controllability
of disjunctive temporal problems with uncertainty. In CP, pages 856–863, 2007.

[33] Alexander Schrijver. Theory of Linear and Integer Programming. J. Wiley &
Sons, 1998.

[34] Roberto Sebastiani. Lazy satisability modulo theories. JSAT, 3(3-4):141–224,
2007.

[35] Roberto Sebastiani and Silvia Tomasi. Optimization in SMT with LA(Q) cost
functions. In IJCAR, pages 484–498, 2012.

[36] Ioannis Tsamardinos and Martha E. Pollack. Efficient solution techniques for
disjunctive temporal reasoning problems. Artificial Intelligence, 151(12):43 – 89,
2003.

45



[37] Kristen B. Venable, Michele Volpato, Bart Peintner, and Neil Yorke-Smith. Weak
and dynamic controllability of temporal problems with disjunctions and uncer-
tainty. In COPLAS, 2010.

[38] Thierry Vidal and Hélène Fargier. Handling contingency in temporal constraint
networks: from consistency to controllabilities. Journal of Experimental and
Theoretical Artificial Intelligence, 11(1):23–45, 1999.

46


